
 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Partnership with: 

   

 

Climate risk analysis from space: remote sensing, 
machine learning, and the future of measuring 
climate-related risk 
Report 
July 2018 

 
 



 

Integrating Remote Sensing Data into Climate Risk Analysis 2 

About 
About the Consortium 
Oxford Sustainable Finance Programme 
The Oxford Sustainable Finance Programme at the University of Oxford Smith School of Enterprise and 
the Environment is a multidisciplinary research centre working to be the world's best place for research 
and teaching on sustainable finance and investment. The Programme was established in 2012 to 
understand the requirements, challenges, and opportunities associated with a reallocation of capital 
towards investments aligned with global environmental sustainability. 

The Programme is based in a world leading university with a global reach and reputation. We work with 
leading practitioners from across the investment chain (including actuaries, asset owners, asset managers, 
accountants, banks, data providers, investment consultants, lawyers, ratings agencies, stock exchanges), 
with firms and their management, and with experts from a wide range of related subject areas (including 
finance, economics, management, geography, anthropology, climate science, law, area studies, 
psychology) within the University of Oxford and beyond. 

  

Carbon Delta 
Carbon Delta has performed a considerable amount of research on the availability of climate risk data and 
the expertise needed to maximise the outcomes of such a project. Carbon Delta is a climate research firm 
that specialises in identifying and analysing the climate change resilience of publicly traded companies. 
Furthermore, Carbon Delta has developed a database of company locations for 25,000 enterprises.  

Carbon Delta provides coordinates for millions of production installations, processes satellite imagery and 
integrates data and runs assessment methodologies. When processing the satellite imagery, Carbon Delta 
will develop a 3-dimensional understanding of the technological activity happening at facilities for 
potentially thousands of companies. 

 

German Research Centre for Geosciences (GFZ) 
The Helmholtz-Zentrum Potsdam - German Research Centre for Geosciences (GFZ) is the German 
National Research Centre for Earth sciences and a member of the German Helmholtz Association (HGF). 
One of the GFZ methodical core competences are in application and development of satellite technologies 
and spacebased measuring methods to monitor Earth surface variables and processes from a range of 
spatial and temporal scales using in-situ, airborne and space-borne instruments. The GFZ Remote Sensing 
section focuses on the development and use of remote sensing techniques for the monitoring of land 
surfaces. In particular, research lines comprise (i) methodological developments for remote sensing data 
analysis and definition of future satellite missions, and (ii) application-oriented research for the 
monitoring of bio- and geophysical parameters of interest to a wide range of scientific disciplines, 
including land degradation studies, natural resources, global vegetation functioning, and land-
atmosphere interactions. In particular, the remote sensing section is renowned for its expertise in 
hyperspectral remote sensing and is the scientific leader of the EnMAP hyperspectral satellite sensor to be 
launched in 2019. 

 

Project funded via EIT Climate-KIC’s CSA Booster 
This innovative project has been made possible through seed-funding from EIT Climate-KIC via CSA 
Booster (http://csabooster.climate-kic.org), a flagship programme of its Sustainable Land Use theme.  EIT 
Climate-KIC is a European knowledge and innovation community, working to accelerate the transition to 
a zero-carbon economy. Supported by the European Institute of Innovation and Technology, it identifies 
and supports innovation that helps society mitigate and adapt to climate change.  

 



 

Integrating Remote Sensing Data into Climate Risk Analysis 3 

Climate-KIC’s CSA Booster is Europe’s leading innovation hub, community and collaboration platform 
pioneering the transition to climate-smart agriculture across Europe, and around the world. Established in 
2015, CSA Booster brings together a multi-stakeholder ecosystem of public and private sector partners 
including some of the leading research institutions in Europe, corporates, start-ups and international 
organizations to catalyse, incubate and scale innovative CSA solutions and to de-risk investments into 
CSA. CSA Booster has partners and projects in all major EU regions and currently acts as the European 
regional hub for the Global Alliance for Climate-smart Agriculture (GACSA) initiative, hosted by the 
UN’s Food and Agriculture Organisation (FAO).  

 

 
 

 

    

 

  



 

Integrating Remote Sensing Data into Climate Risk Analysis 4 

About the Authors 
Oxford Sustainable Finance Programme 
Dr Ben Caldecott is the founding Director of the Oxford Sustainable Finance Programme at the University 
of Oxford Smith School of Enterprise and the Environment. He is concurrently an Academic Visitor at the 
Bank of England, a Visiting Scholar at Stanford University, a Senior Advisor at Highmore LLC, and a 
Senior Associate Fellow at Bright Blue. Ben specialises in environment, energy, and sustainability issues 
and works at the intersection between finance, government, civil society, and academe, having held senior 
roles in each domain. 
 
Lucas Kruitwagen is the Data Lead at the Oxford Sustainable Finance Programme and a D.Phil. Student 
in the University of Oxford School of Geography and the Environment. Lucas researches how data-driven 
technology is changing the availability of environmental risk information, particularly in relation to 
company and investor risk exposure. Lucas is also a Visiting Researcher at Imperial College London 
where he researches organisational decision-making under conditions of risk and uncertainty. He holds 
an MSc (with distinction) in Sustainable Energy Futures from Imperial College London where he was a 
ClimateKIC Master's Label Student, and a BEng from McGill University, Montreal, where he was a Loran 
Scholar. 
 
Dr Matthew McCarten is a Postdoctoral Research Associate at the Oxford Sustainable Finance 
Programme. Prior to joining Oxford he completed his PhD thesis in finance at the University of Otago, 
New Zealand in 2017. His thesis examined the determinants and consequences of securities class actions. 
In particular, investigating the association between securities class actions and various corporate 
characteristics, including debt financing, political lobbying and innovation. He also holds a MBus (with 
distinction) and a BCom from the University of Otago. 
 
Dr Xiaoyan Zhou is a Postdoctoral Research Associate at the Oxford Sustainable Finance Programme. Her 
research interests focus on Responsible Investment, Carbon Disclosure/Emission and Institutional 
Shareholder Engagement. Prior to joining the Sustainable Finance Progamme, Xiaoyan Zhou was in 
charge of establishing two joint venture companies in China and fully participated two IPOs on 
Australian Stock Exchange and London Stock Exchange Alternative Investment Market during 2003-2007. 
She holds a PhD in Finance from ICMA Centre, Henley Business School and MLitt in Finance and 
Management from University of St Andrews. 
 
 
Carbon Delta 
David Lunsford is a Co-Founder and Head of Development for Carbon Delta, where he designs risk 
assessment methodologies, manages a team of research analysts, oversees and validates analytical results, 
and builds client relationships for the firm. He previously worked for several years on climate change 
mitigation and greenhouse gas trading issues in Europe and China, supporting large companies in 
managing climate risks associated with the transition to a low carbon economy. David possesses 11 years 
of experience bringing diverse stakeholders together on varying levels, encouraging new climate change 
strategies that make sense for business, investors and policymakers alike. 
 
Oliver Marchand is a Co-Founder and CEO of Carbon Delta. Prior to this, he spent 9 years with Fisch 
Asset Management as Head of IT. In that position he led a team that was responsible for all IT operations 
and development of the in-house portfolio management system. Moreover, Oliver worked as a researcher 
in weather forecasting for almost a decade at various weather services. This included exciting research 
projects such as the development of thunderstorm warning systems and wind profiling data integration, 
and required a high-performance computing cluster operation. Oliver holds a Ph.D. in Computer Science 
from ETH Zürich. He is passionate about programming, triathlon, solar cooking and his family. 
 
Phanos Hadjikyriakou is a Data Analyst at Carbon Delta. He is working on methods to approximate 
supply chain information, using multi-regional input-output analysis. Part of his research includes water 
accounting, natural capital valuation and scope 3 carbon footprints. Phanos is passionate about using 



 

Integrating Remote Sensing Data into Climate Risk Analysis 5 

macro-economic data to increase the transparency of global supply chains and quantify their 
environmental impacts. He studied at the ETH Lausanne and Zurich and will soon graduate with a 
Masters in Environmental Engineering. 
 
Valentin Bickel is a PhD student at the Swiss Federal Institute of Technology Zurich (Switzerland) and 
the Max Planck Institute for Solar System Research in Göttingen (Germany), working in the field of 
Remote Sensing and Planetary Science. He joined the Carbon Delta team as an external consultant.  
 
 
German Research Centre for Geosciences (GFZ) 
Prof. Dr. Torsten Sachs is the head of the Earth-Atmosphere Interactions Group within the GFZ Section 
Remote Sensing. His research focusses on the land-atmosphere exchange of heat, water vapor, and 
greenhouse gases (CO2, CH4) from local (m² - ha) to regional (>10.000 km²) scales using stationary and 
mobile (airborne) platforms in both temperate and high latitudes. He has 14 years of research experience 
including eight extensive aircraft and helicopter-based campaigns in the US, Canadian, and Siberian 
Arctic as well as northern Scandinavia. Among other projects, he is involved in the EU Horizon2020 
Research and Innovation Actions INTAROS and NUNATARYUK, as well as in the Cofund ERA-NETs 
ERA-GAS and ERA-PLANET. He serves in the Science Advisory Group of the German-French Methane 
Remote Sensing LIDAR (MERLIN) Mission to be launched in June 2020. 
 
Niklas Bohn is a PhD candidate at GFZ Postdam undertaking work in the remote sensing section. Niklas 
has also worked as a research assistant and interned at GFZ between 2016 and 2017. He has also interned 
at the United Nations Platform for Space-based Information for Disaster Management and Emergency 
Response (UN-SPIDER). He holds a Master of Science in Studies of Environmental Geography and 
Management. 
 
 
Disclaimer  
The Chancellor, Masters, and Scholars of the University of Oxford, Carbon Delta, and GFZ German 
Research Centre for Geosciences make no representations and provide no warranties in relation to any 
aspect of this publication, including regarding the advisability of investing in any particular company or 
investment fund or other vehicle. While we have obtained information believed to be reliable, neither the 
University, Carbon Delta, and GFZ German Research Centre for Geosciences, nor any of its employees, 
students, or appointees, shall be liable for any claims or losses of any nature in connection with 
information contained in this document, including but not limited to, lost profits or punitive or 
consequential damages. 

  



 

Integrating Remote Sensing Data into Climate Risk Analysis 6 

 

Contents 
About ..................................................................................................................................................................... 2 

About the Consortium ..................................................................................................................................... 2 
About the Authors............................................................................................................................................ 4 
Disclaimer ......................................................................................................................................................... 5 

Executive Summary .............................................................................................................................................. 7 
1. Introduction .................................................................................................................................................. 8 

1.1. Questions ............................................................................................................................................ 9 
2. Identifying Technology Features at Assets ............................................................................................... 10 

2.1. Data Availability .............................................................................................................................. 10 
2.2. Algorithms ........................................................................................................................................ 11 

3. Measuring GHG Emissions ....................................................................................................................... 13 
3.1. Direct Emissions Monitoring ........................................................................................................... 13 

3.1.1. Available Instruments ................................................................................................................. 13 
3.1.2. Retrieval Methods ........................................................................................................................ 17 
3.1.3. Detection Thresholds and Retrieval Precision ........................................................................... 18 
3.1.4. Conclusion .................................................................................................................................... 19 

3.2. Indirect Emissions Monitoring ........................................................................................................ 20 
4. Asset Environment and Localisation ........................................................................................................ 21 

4.1. Automatic Asset Environment Classification ................................................................................. 21 
4.2. Utilisation of OpenStreetMap for Asset Identification and Localisation ...................................... 24 

5. Sectoral Details ........................................................................................................................................... 26 
5.1. Agriculture ........................................................................................................................................ 26 
5.2. Heavy Industry ................................................................................................................................. 28 

5.2.1. Aluminium Electrolysis & Exclusion .......................................................................................... 28 
5.2.2. Cement.......................................................................................................................................... 29 
5.2.3. Chemicals & Industrial Processes ............................................................................................... 30 
5.2.4. Oil Refining & Upgrading ........................................................................................................... 31 
5.2.5. Pulp & Paper ................................................................................................................................ 31 
5.2.6. Glass.............................................................................................................................................. 32 
5.2.7. Iron & Steel ................................................................................................................................... 33 

5.3. Mining ............................................................................................................................................... 34 
5.3.1. Bauxite .......................................................................................................................................... 34 
5.3.2. Coal ............................................................................................................................................... 35 
5.3.3. Gold .............................................................................................................................................. 37 
5.3.4. Uranium ....................................................................................................................................... 37 
5.3.5. Iron Ore ........................................................................................................................................ 37 
5.3.6. Diamond ....................................................................................................................................... 38 

5.4. Oil & Gas Extraction ......................................................................................................................... 39 
5.5. Power Sector ..................................................................................................................................... 42 

5.5.1. Coal ............................................................................................................................................... 42 
5.5.2. Gas ................................................................................................................................................ 42 
5.5.3. Oil ................................................................................................................................................. 42 
5.5.4. Nuclear ......................................................................................................................................... 42 
5.5.5. Solar PV ........................................................................................................................................ 43 
5.5.6. Wind ............................................................................................................................................. 45 

5.6. Retail & Commercial ........................................................................................................................ 46 
5.7. Overview........................................................................................................................................... 46 

6. Conclusion .................................................................................................................................................. 47 
Glossary ............................................................................................................................................................... 48 
Appendix A: Spaceborne Instruments for Monitoring Atmospheric GHG Concentrations ......................... 49 
Appendix B: Sectoral Summary Table .............................................................................................................. 50 
 

  



 

Integrating Remote Sensing Data into Climate Risk Analysis 7 

Executive Summary  
• Accurate asset-level data can dramatically enhance the ability of investors, regulators, 

governments, and civil society to measure and manage different forms of environmental risk, 
opportunity, and impact. Asset-level data is information about physical and non-physical assets 
tied to company ownership information.  

• Remote sensing (and related technological developments such as machine learning) can help 
secure better asset-level data and at higher refresh rates. In particular remote sensing can help 
identify the features and use of assets relevant to determining asset-level GHG emissions. 

• We expect that the development of a global catalogue of every physical asset in the world to be 
already within the reach of technical feasibility. The process of identifying and tagging assets 
(e.g. power generating stations, mines, farms, industrial sites) and asset-level features (e.g. cooling 
technologies, air pollution control technologies) can be automated through the use of machine 
learning.  

• It is possible to train learning algorithms to recognise an asset and its features in remote 
imagery and then scan global imagery corpuses to identify all assets of that type. Human error 
rates are sufficiently low on these classification tasks that it is reasonable to expect these problems 
to be entirely automatable.  

• With the exponential increase in space-based sensing, computing power, and algorithmic 
complexity, end-to-end learning systems are becoming increasingly available to academic 
researchers and the private sector alike.  

• There are also viable methods using remote sensing data that could be implemented to 
measure asset-level GHG emissions. These methods are: (1) a direct method, which involves the 
use of various sensors on spaceborne and airborne instruments to measure emissions directly; and 
(2) an indirect method, which utilises various identifiable asset characteristics to model GHG 
emissions. 

• The direct method of monitoring emissions requires the use of satellite or airborne instruments. 
Accurately monitor GHGs from space is challenging because of their relatively small signal in 
comparison to other atmospheric constituents, but advances in both sensor technology and 
retrieval models are leading to more precise detection.  

• Direct emission monitoring is currently feasible for a relatively limited scope of assets (such as 
assets that are situated in regions with very few other sources of emissions in the surrounding 
area). The launch of the CarbonSat satellite in 2020 as well as some already scheduled sun-
synchronous sensors offer the potential for more precise observation of GHG concentrations 
and emissions at the asset-level. 

• A complementary approach to direct measurement is to model GHG emissions indirectly using 
identifiable asset characteristics. This requires the identification of key characteristics that are 
associated with GHG emissions. For example, asset utilisation rates are inherently linked to the 
level of GHG emissions. Using some of the spaceborne instruments in combination with real 
asset-level production data it is possible to model an asset’s utilisation rate. Employing this 
projection of the utilisation rate an estimate of the emissions can then be obtained using a 
standardised model. The indirect approach represents a more feasible method of measuring 
GHG emissions based on currently available technology.  

• Through future research projects undertaken over multiple phases we plan to make asset-level 
data (including various technical features) and GHG emissions monitoring for each asset 
(using both direct and indirect methods) available for every physical asset in every sector 
globally, beginning with the most GHG intensive assets. We hope to create platforms for 
various users to access and use this data. This endeavour has the potential to transform how 
different actors in different parts of society measure and manage environmental risks, impacts 
and opportunities. It is enabled by significant public (and private) investment in data capture and 
remote sensing, which can now be brought together and processed in novel ways for direct 
application. 
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1. Introduction 
Accurate asset-level data can dramatically enhance the ability of investors, regulators, governments, and 
civil society to measure and manage different forms of environmental risk, opportunity, and impact. 
Asset-level data is information about physical and non-physical assets tied to company ownership 
information. Asset-level data can be aggregated at the company, regional, or global level suiting a variety 
of needs, for example: 

• Asset managers want data that can be analysed so as to differentiate between companies. They 
would like to be able to do that across asset classes (e.g. equities, non-listed, corporate bonds etc.), 
sectors (e.g. downstream energy, upstream energy, transport, property etc.), and markets (e.g. US, 
China, EU etc.). Companies own portfolios of assets and so understanding the exposure of 
company assets to environmental factors and aggregating this data to the parent company-level is 
the best way of understanding firm wide exposure. 

• In turn, asset owners want to be able to know the exposure of their asset managers so they can 
differentiate between them and compare them to benchmarks. If we know who owns which 
companies, and we know how exposed each company asset is to different risks, then we can 
effectively analyse asset manager exposure. 

• Citizen savers are increasingly concerned about ethical considerations and trends such as the 
fossil fuel divestment campaign. They want to know which asset owners and which fund options 
are most aligned with their concerns and priorities. This trend is accelerating due to the trend 
towards ‘Defined Contribution’ pension schemes opposed to more traditional ‘Defined Benefit’ 
ones. 

• Regulators, as recently demonstrated by interventions from the Governor of the Bank of England 
and others, are interested in where risk is in the system and whether it could have financial 
stability implications if there is a disorderly correction due to rapid changes in asset prices. They 
want to see which entities own assets most at risk – for example, which systemically important 
financial institutions are exposed directly or indirectly to particularly at risk assets. 

• Finally, policymakers and civil society want to know whether we are on track to delivering the 
transition to a low carbon economy, whether in aggregate (e.g. globally, regionally, nationally) or 
in terms of specific companies or sectors within countries. To do this, they need to know how 
much ‘committed emissions’ there are from existing assets or will be from planned capital 
expenditure. Civil society will want to examine whether companies’ rhetoric and action add up, 
and also whether financial institutions own or are financing companies and assets that are 
incompatible with climate change and other environmental challenges. 

Asset-level data resides in a wide range of different locations. It exists in current company disclosures to 
financial markets, regulators, and government agencies (in multiple jurisdictions and in different 
languages); in voluntary disclosures; in current proprietary and non-proprietary databases; in public and 
private research institutions; and in academic research. Despite this, it is often of very poor quality, in 
terms of both coverage and accuracy. As a result, the use of remote sensing to identify asset-level data can 
significantly improve our understanding of asset-level risks.  

This report examines the potential role of remote sensing (and related technological developments such as 
machine learning) to secure better asset-level data and at higher refresh rates. In particular we focus on 
using remote sensing to identify the features and use of assets relevant to determining their greenhouse 
gas (GHG) emissions. Remote sensing combined with machine learning could potentially provide the 
ability to:  

• Conduct ‘persistent’ monitoring of assets; 

• Significantly enhance the determination of asset ownership; 

• Facilitate satellite measurement of asset-level greenhouse gas (GHG) emissions; 

• Allow the ‘real time’ monitoring and identification of local environmental impacts; 
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• Make data and analysis available to a wide range of stakeholders helping to ensure that the more 
sophisticated approaches benefit to society as a whole; and 

• Combine remote sensing environmental risk analysis with large scale financial databases to 
develop innovative products. 

 

1.1. Questions 
As part of our research we focused on the following questions: 

• What is the accessibility of high resolution satellite data offered via non-commercial satellites to 
measure GHG emissions from large emitting assets? 

• What data products are offered by other, possibly commercial, data providers to measure GHG? 

• What is the accessibility of high resolution remote sensing data to identify technology features of 
assets? 

• What is the feasibility of developing a methodology for asset-level GHG measurement through 
remote sensing? 

• What is the feasibility of developing a methodology for identifying technology features of assets? 

The report is organised as follows. Section 2 provides an overview of the data sources that are available 
and the methods that can be implemented for the identification of asset-level technology features. Section 
3 outlines two potential methods for measuring GHG emissions. These methods are: (1) a direct method, 
which involves the use of various sensors on spaceborne and airborne instruments to measure emissions 
directly; and (2) an indirect method, which utilises various identifiable asset characteristics to model GHG 
emissions. Section 4 outlines a method to automatically identify an assets environment and presents an 
approach for using OpenStreetMaps to identify the location of assets. In Section 5 a pilot study analysing 
the feasibility of identifying types of assets and their features from space is reported. Finally, Section 6 
provides concluding remarks. 
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2. Identifying Technology Features at Assets 
Many human-made assets have features that indicate their actual or potential impact on the natural 
environment, as well as the exposure of an asset to different environment-related risks (and 
opportunities).  

For example, assets in locations with high population density, serious local air pollution, and which lack 
emissions abatement are at greater risk of being regulated and required to either install emission 
abatement technologies or cease operation. Assets that utilise emission abatement technologies (e.g. flue 
gas desulphurisation units and electrostatic precipitators) will have lower emissions and also face lower 
financial risks. 

Furthermore, assets located in areas with higher physical baseline water stress are at higher risk of being 
forced to reduce or cease operations. This water stress risk will be lower for assets deploying water-
efficient cooling systems, such as utilising closed-cycle, hybrid or dry-cooling technology. 

Finally, the more carbon intensive an asset is the more likely it is to be negatively impacted by climate 
policy, in terms of carbon pricing, emissions performance standards, or other similar measures. More 
carbon-intensive assets are more exposed to transitional risk from climate change mitigation policy. More 
efficient production technology (such as the type of boiler used in power plants) can significantly reduce 
the carbon intensity of an asset and as a result also reduce its risk exposure. 

Methods for identifying these features can give researchers and others access to large-scale datasets of 
assets in the real economy and their features relevant to objectively measuring environmental risks and 
impacts. 

 

2.1. Data Availability 
Currently, we can identify features by examining satellite imagery provided by sources such as Google 
Earth and manually tagging asset specific locations and classifying them into various groups. This type of 
identification process has been used by CoalSwarm who have developed a database of coal-fired power 
plants. To determine exact coordinates for power plants CoalSwarm used Google Maps, Google Earth, or 
Wikimapia. This type of manual classification and tagging becomes particularly onerous if there is no easy 
way to identify, generally, where assets are located. 

This process of identifying and tagging assets can be done in a more efficient manner through the using of 
machine learning. Machine learning applies statistical techniques to a corpus of data to ‘learn’ the 
parameters of a sophisticated classification or regression algorithm. Computer vision describes a class of 
problem where machine learning has been successfully applied to recognising object and features in 
images. These methods might be applied to a global corpus remote sensing imagery, enabling the 
detection and feature extraction of assets anywhere in the world. Using this type of process it is possible 
to build a global catalogue of physical assets. 

One of the challenges facing remotely-sensed environmental feature detection is the lack of labelled 
training data. It is yet indeterminate whether a generalizable feature detection machine can be built from a 
relatively small seeded sample of real economy assets and their environmental features. Major 
breakthroughs in computer vision occurred when the number of images in the training set was expanded 
from thousands to millions and the neural network architecture used in their analysis extended to dozens 
of layers. There are promising methods for overcoming these data problems.  

Conventional data science techniques such as data synthesis and resampling can artificially reduce model 
error in exchange for bias. While a form of data synthesis, time-series remote sensing imagery can 
improve data availability beyond crude data synthesis and resampling. Transfer learning has been 
successfully applied to build reliable classifiers with training samples on the order of 1000s. There is no 
shortage of remote sensing data – rather a shortage of labels. Most neural-network classifiers of remote 
sensing imagery do not use all multi-spectral bands of data. Open-source geospatial data such as 
OpenStreetMaps might be used to train networks capable of ingesting all spectra of imagery, which can 
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then be transferred for more specific classification tasks. As a final resort, the previous literature of hand-
crafted features can be consulted. 

 

2.2. Algorithms 
Asset detection in remote sensing imagery began as a collection of conventional methods in Geographic 
Information Systems (GIS).1 Assets are identified by an algorithmic collection of features (such as edges, 
gradients, shapes, and colours), which in turn are patterns in the underlying image data. In the past, the 
formulae for the identification of features were done by a researcher by hand, perhaps with the assistance 
of a statistical model.2 With coarse resolutions, assets were often sub-pixel in scale; features involved band 
math of single pixels or the close neighbourhood of pixels.3 

Machine learning methods have been used for several decades to support the development of features in 
asset detection. In the absence of sufficient data, computing power, and algorithm research, researchers 
used low-complexity methods like random-forests4 or support vector machines5 to build passable 
classifiers, sometimes utilising hand-designed band-math features as inputs or logic heuristics as outputs.6 
As a general rule, where researchers have encountered data, algorithmic, or computing barriers they have 
hand-developed the feature math or heuristic logic themselves. Emerging machine learning methods are 
rendering this design work obsolete. 

Deep learning computer vision methods are now making their entry into the remote sensing field.7 
Remote sensing computer vision problems are somewhat unique as a class – in some ways which are 
advantageous such as fixed perspectives (i.e. zenith angles and orbit distances) and the availability of 
multi-spectral data, and others which present unique challenges (e.g. cloud interference). Convolutional 
neural networks (CNNs) are the leading method for image classification, taking into account the 2-
dimensional ‘proximity’ of pixels in their input features.8 CNNs can learn sophisticated features of the 
input image, including pixel-by-pixel semantic segmentation, identifying objects and object features in the 
image.9 Generalised multi-class classifiers can be used across asset types to improve training efficiency.  

Environmental features of technology may be learnable like any other features of an asset class of interest. 
Indeed, that a human expert can recognise, in a suitably high-resolution image, certain environmental 
features indicates that the Bayesian error for such a task is not so high as to prevent the useful automation 
of feature detection. As computing power, data availability, and algorithm sophistication grow 
exponentially, more and more sophisticated feature detection problems become possible. One of the 
purposes of this present study is to benchmark progress on solving these problems, and be able to project 
when progress will unlock the ability to solve problems relevant to the analysis of climate-related risk. 
  

                                                        
1 See, e.g., Blashke, T. (2010),’ Object based image analysis for remote sensing’, ISPRS Journal of Photogrammetry and Remote Sensing 
65(1), 2-16. 
2 Tokarczyk, P., Wegner, J. D., Walk, S., & Schindler, K. (2013) ‘ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences’, II-3W1 
3 See, e.g., Kerekes, J. P. (2011) ‘Hyperspectral remote sensing subpixel object detection performance’, Applied Imagery Pattern 
Recognition Workshop (AIPR), Washington DC, 2011, pp. 1-4.  
4 See, e.g., Freidl, M. A., & Brodley, C. E. (1997) ‘Decision tree classification of land cover from remotely sensed data’, Remote Sensing 
of Environment, 399-409. 
5 See, e.g., Melgani, F., & Bruzzone, L. (1993) ‘Classifciation of Hyperspectral Remote Sensing Images with Support Vector Machines’, 
IEEE Transactions Geoscience and Remote Sensing, 42(8) 1778-1790. 
6 See Niemeyer, I. & Canty, M. J. (2001), Knowledge-based interpretation of satellite data by object-based and multi-scale image 
analysis in the context of nuclear verification, in ‘Geoscience and Remote Sensing Symposium, 2001’, pp. 2982–2982. 
7 Cheng, G. & Han, J. (2016), ‘A survey on object detection in optical remote sensing images’, ISPRS Journal of Photogrammetry and 
Remote Sensing, 117, 11–28. 
8 See, e.g., Romero, A., Gatta, & C., Camps-Valls, G. (2015) ‘Unsupervised Deep Feature Extraction for Remote Sensing Image 
Classification’, IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1349 - 1362 
9 See, e.g., Yiting, T., Xu, M., Zhang, F., & Zhang, L. (2017) ‘Unsupervised-Restricted Deconvolutional Neural Network for Very High 
Resolution Remote-Sensing Image Classification’, IEEE Transactions on Geoscience and Remote Sensing, PP(99):1-19 
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Table 1. Identification of Human-Made Assets and Features 
This table presents a summary of the various features that have been identified remotely within different sectors. 

Sector Identified Features 

Buildings Building Detection,10 Building Height Estimation11 
Road/Rail Centerline/Network Extraction,12 Environmental Exposure13 
Aviation Aircraft Detection14 
Shipping Ship Detection15 
Automotive Car Detection16 
Heavy Industry Bauxite Pollution Detection17 
Mining Underground Mining Detection,18 Environmental Monitoring19 
Oil & Gas Oil Spill Detection,20 Gas Flaring Detection and Volume 

Estimation,21 Offshore Platform Detection22 
Utilities Wind Resource Assessment,23 Wind Turbine Detection,24 Solar PV 

Detection25 
  

                                                        
10 Cote, M. & Saeedi, P. (2013), ‘Automatic rooftop extraction in nadir aerial imagery of suburban regions using corners and 
variational level set evolution’, IEEE Transactions on Geoscience and Remote Sensing 51(1), 313–328. 
11 Colin-Koeniguer, E. & Trouva, N. (2014), ‘Performance of building height estimation using high-resolution polinsar images’, IEEE 
Transactions on Geoscience and Remote Sensing 52(9), 5870–5879. 
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3. Measuring GHG Emissions 
The monitoring of atmospheric greenhouse gas (GHG) concentrations from space is becoming 
increasingly important since they drive climate change. More than 40% of global annual anthropogenic 
CO2 emissions are caused by coal burning power plants and CH4 is emitted by both anthropogenic 
sources like livestock, oil-gas systems, landfills, coal mines, wastewater management and rice cultivation, 
as well as by natural sources like wetlands, inland waters and termites.26, 27, 28, 29 CH4 has a 100 year Global 
Warming Potential (GWP) approximately 21 times that of CO2.30  

This section provides an overview of two possible methods that could be implemented to measure GHGs. 
These methods are: (1) a direct method, which involves the use of various sensors on spaceborne and 
airborne instruments to measure emissions directly; and (2) an indirect method, which utilises various 
identifiable asset characteristics to model GHG emissions. 

 

3.1. Direct Emissions Monitoring 
The direct method of monitoring emissions requires the use of satellite or airborne instruments. 
Accurately monitoring GHGs from space is challenging because of their relatively small signal in 
comparison to other atmospheric constituents, but advances in both sensor technology and retrieval 
models are leading to more precise detection. Higher spatial resolution, in particular, is critical in order to 
quantify emissions from point sources like coal mines, ventilation shafts or landfills.31 The following 
section presents an overview of the various spaceborne and airborne instruments available for GHG 
measurement; the retrieval methods that could be applied; the detection thresholds and precision of the 
retrievals; and finally provides concluding remarks on the feasibility of the direct method of emissions 
measurement. 

 

3.1.1. Available Instruments 

3.1.1.1. Spaceborne Instruments 

Since the launch of SCIAMACHY in 2003 spaceborne instruments have been able to retrieve measures of 
atmospheric CO2 and CH4. Depending on the instrument, the retrievals can be obtained at a global scale 
or at the asset-level in combination with airborne data. Generally, satellite sensors are in a low sun-
synchronous orbit, which leads to a fixed observing time each day for every point on the surface of the 
earth. CO2 and CH4 are detected as column-averaged dry air mole fractions (XCO2, XCH4) in the along- 
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27 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
'Satellite observations of atmospheric methane and their value for quantifying methane emissions'. Atmospheric Chemistry and Physics, 
16(22), 14371-14396. 
28 Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Abshire, B. J., Bovensmann, H., Burrows, P. J., Chevallier, F., Ciais, P., 
Crevoisier, C., Fix, A., Flamant, P., Frankenberg, C., Gibert, F., Heim, B., Heimann, M., Houweling, S., Hubberten, W. H., Jöckel, P., 
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present in their digestive system. 
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Table 2. GHG Emission Detection by Spaceborne Instruments 
This table presents a summary of the types of GHG emissions that can be detected by current and future spaceborne instruments. 

  Current Instruments   Future Instruments 

  Instrument Name Launch Point Source Detection Satellite Type   Instrument Name Launch Point Source Detection Satellite Type 
XCO2 AIRS 2002 No Public XCO2 GOSAT-2 2018 No Public 

  IASI 2007 No Public   CarbonSat 2020 Yes Public 

  GOSAT 2009 No Public   IASI-NG 2021 No Public 

  OCO-2 2014 Partly Public   geoCARB 2020 - 2023 No Public 

  TanSat 2016 No Public   GeoFTS proposed No Public 

      
  G3E proposed Yes Public 

XCO AIRS 2002 No Public XCO GOSAT-2 2018 No Public 

  TROPOMI 2017 Partly Public   Sentinel-5/UVNS 2021 No Public 

      
  geoCARB 2020 - 2023 No Public 

      
  GeoFTS proposed No Public 

         G3E proposed Yes Public 

XCH4 AIRS 2002 No Public XCH4 GOSAT-2 2018 No Public 

  IASI 2007 No Public   Bluefield 2019 - 21 Yes Private 

  GOSAT 2009 No Public   CarbonSat 2020 Yes Public 

  CrIS 2011 No Public   Sentinel-5/UVNS 2021 No Public 

  GHGSat 2016 Yes Private   geoCARB 2020 - 2023 No Public 

  TROPOMI 2017 Partly Public   IASI-NG 2021 No Public 

      
  MERLIN 2021/22 Yes Public 

      
  GEO-CAPE 2022 Yes Public 

      
  GeoFTS proposed No Public 

         G3E proposed Yes Public 

XSO2 AIRS 2002 No Public XSO2 Sentinel-4/UVN 2019 No Public 

      
  Sentinel-5/UVNS 2021 No Public 

      
  GEO-CAPE 2022 Yes Public 

XNO2      XNO2 Sentinel-4/UVN 2019 No Public 

XNH3      XNH3 GEO-CAPE 2022 Yes Public 

XHCHO      XHCHO Sentinel-4/UVN 2019 No Public 

         GEO-CAPE 2022 Yes Public 

XO3 AIRS 2002 No Public XO3 Sentinel-4/UVN 2019 No Public 

  IASI 2007 No Public   Sentinel-5/UVNS 2021 No Public 

            IASI-NG 2021 No Public 
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track nadir but some instruments also measure cross-track in the off-nadir that increases the spatial 
coverage. The characteristic absorption features of CH4 are located in the shortwave infrared (SWIR) 
around 1650 and 2300 nm, and in the thermal infrared (TIR) at 8000 nm.32 CO2 can be derived in 
wavelength regions around 760, 1610 and 2060 nm.33 Measurements in the SWIR are more sensitive to the 
near-surface atmospheric layers where the emitting sources are located, whereas TIR measurements 
provide a more regular sampling of the entire atmospheric column. This makes TIR retrievals less 
sensitive to CO2 and CH4 emissions local and regional scales.34 

Table 2 provides an overview of the types of atmospheric GHG concentrations that can be measured by 
current and future spaceborne instruments. This table provides an indication of whether the instrument 
can be used to pinpoint emissions to a particular point source. Appendix A presents a more detailed 
overview of these satellites and their specifications. The Greenhouse Gases Observing Satellite (GOSAT) 
launched in 2009 measures at 1650 nm with high spectral resolution for CH4 retrieval on a continental or 
regional scale of 100 to 1000 km.35 It only measures at predefined pixel locations, which are partly 
separated by more than 250 km, leading to spatial observation gaps. It is also designed to deliver CO2 
concentrations using the 2060 nm fitting window.36 In 2018 GOSAT-2 is planned to be launched, which 
will have higher precision and the ability to also detect CH4 in the 2300 nm window.37 The Tropospheric 
Monitoring Instrument (TROPOMI) launched in 2017 onboard the Sentinel-5p satellite is supposed to 
quantify daily emissions of CH4 with the possibility to detect large point sources using the 2300 nm 
absorption feature. It simultaneously retrieves CO column concentration and provides a global coverage 
with a pixel resolution of 7 x 7 km2.38, 39, 40  

Furthermore, the European Space Agency (ESA) is preparing the UVNS instrument onboard Sentinel-5 to 
be launched in 2021.41 Mentionable instruments for CO2 monitoring in the SWIR region are the Orbiting 
Carbon Observatory 2 (OCO-2) measuring with a spatial resolution of max. 1.29 x 2.25 km2, and the 
Carbon Dioxide Spectrometer (CDS) onboard the Chinese Carbon Dioxide Observation Satellite (TanSat) 
having a ground sampling distance of 1 x 2 km2 and a 16-day revisiting time.42, 43, 44 However, OCO-2 is 
not a mapping mission but a global sampling mission, which leads to wide spatial and temporal gaps 
                                                        
32 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
'Satellite observations of atmospheric methane and their value for quantifying methane emissions'. Atmospheric Chemistry and Physics, 
16(22), 14371-14396. 
33 Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., & Crisp, D. (2017). 'Quantifying CO2 Emissions From 
Individual Power Plants From Space'. Geophysical Research Letters, 44(19), 10,045-10,053. 
34 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
'Satellite observations of atmospheric methane and their value for quantifying methane emissions'. Atmospheric Chemistry and Physics, 
16(22), 14371-14396. 
35 Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., & Kataoka, F. (2016). 
'Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space'. Atmospheric 
Measurement Techniques, 9(6). 
36 Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., & Crisp, D. (2017). 'Quantifying CO2 Emissions From 
Individual Power Plants From Space'. Geophysical Research Letters, 44(19), 10,045-10,053. 
37 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
'Satellite observations of atmospheric methane and their value for quantifying methane emissions'. Atmospheric Chemistry and Physics, 
16(22), 14371-14396. 
38 Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., & Aben, I. (2012). 'TROPOMI aboard Sentinel-5 Precursor: Prospective 
performance of CH4 retrievals for aerosol and cirrus loaded atmospheres'. Remote Sensing of Environment, 120(Supplement C), 267-
276. 
39 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van 
Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., & 
Levelt, P. F. (2012). 'TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric 
composition for climate, air quality and ozone layer applications'. Remote Sensing of Environment, 120(Supplement C), 70-83. 
40 Hu, H., Hasekamp, O., Butz, A., Galli, A., Landgraf, J., de Brugh, J. A., Borsdorff, T., Scheepmaker, R., & Aben, I. (2016). 'The 
operational methane retrieval algorithm for TROPOMI'. Atmospheric Measurement Techniques, 9(11), 5423. 
41 Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Abshire, B. J., Bovensmann, H., Burrows, P. J., Chevallier, F., Ciais, P., 
Crevoisier, C., Fix, A., Flamant, P., Frankenberg, C., Gibert, F., Heim, B., Heimann, M., Houweling, S., Hubberten, W. H., Jöckel, P., 
Law, K., Löw, A., Marshall, J., Agusti-Panareda, A., Payan, S., Prigent, C., Rairoux, P., Sachs, T., Scholze, M., & Wirth, M. (2017). 
'MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane'. Remote Sensing, 9(10). 
42 Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A., Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., & 
Doran, G. B. (2017). 'The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically 
calibrated products'. Atmospheric Measurement Techniques, 10(1), 59. 
43 Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., & Crisp, D. (2017). 'Quantifying CO2 Emissions From 
Individual Power Plants From Space'. Geophysical Research Letters, 44(19), 10,045-10,053. 
44 Chen, X., Wang, J., Liu, Y., Xu, X., Cai, Z., Yang, D., Yan, C.-X., & Feng, L. (2017). 'Angular dependence of aerosol information 
content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites'. Remote Sensing of 
Environment, 196, 163-177. 
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between the observations.45 The commercial satellite GHGSat has a high spatial resolution of 50 x 50 m2 
and is therefore able to detect small point sources. However, it only covers selected observing targets and 
has a revisiting time of two weeks.46 An even higher spatial resolution of 20 x 20 m2 will be provided by 
the commercial Bluefield instruments. This constellation of microsatellites is scheduled to be in orbit from 
2019 on, having a short revisiting time and global coverage for the monitoring of CH4 emissions.47 
Another future instrument is the CarbonSat Satellite, which should provide CO2 and CH4 concentrations 
on a global scale with a spatial resolution of 2 x 2 km2 leading to the ability to detect emission point 
sources.48 Even hyperspectral instruments like the planned EnMAP mission, which is primarily not 
designed for GHG observation, have the potential to accurately detect emissions from point sources.49 
This assumption is based on a study50 that found that the hyperspectral Hyperion sensor was able to 
detect CH4 emissions from a single anthropogenic superemitter with a spatial resolution of 30m. In the 
field of lidar measurements the CH4 Remote Sensing Lidar Mission (MERLIN) will be launched in 2021 or 
2022 and monitor CH4 emissions around 1650 nm by recording the along-track laser-emitted radiation 
reflected by the surface.51, 52 It will provide data on a 0.15 x 0.15 km2 grid with a revisiting time of 28 
days.53 Furthermore, new geostationary sensors will be launched in the future, including GEO-CAPE, 
GeoFTS, geoCARB (launch date after 2020) and G3E, which will measure at a continental scale with 
spatial resolutions between 375 m and 10 km.54, 55, 56, 57, 58 In 2019, ESA and the European Organization for 
the Exploitation of Meteorological Satellites (EUMETSAT) plan to also launch a geostationary satellite 
(Meteosat Third Generation) carrying the Sentinel-4/UVN instrument with a spatial resolution of 8 x 8 
km2. It will be designed for the monitoring of O3, NO2, SO2 and HCHO, however it will not be capable of 

                                                        
45 Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., & Crisp, D. (2017). 'Quantifying CO2 Emissions From 
Individual Power Plants From Space'. Geophysical Research Letters, 44(19), 10,045-10,053. 
46 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
'Satellite observations of atmospheric methane and their value for quantifying methane emissions'. Atmospheric Chemistry and Physics, 
16(22), 14371-14396. 
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monitoring CH4 or CO2.59 Current instruments using the TIR absorption feature for the CO2 and CH4 
retrieval include the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding 
Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS).60 Furthermore the French center for 
space science (CNES), in cooperation with EUMETSAT, plans to launch the next generation IASA (IASI-
NG) in 2021.61 

 

3.1.1.2. Airborne Instruments 

Another way to detect GHG emissions from point sources is through the use of airborne sensors. They 
basically use the same retrieval methods as spaceborne instruments but have distinct spatial resolution, at 
the expense of a much coarser spectral resolution. Examples are the Methane Airborne Mapper 
(MAMAP), the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), which is 
also able to derive CO2 and water vapour concentrations, and the Hyperspectral Thermal Emission 
Spectrometer (HyTES).62, 63, 64 The latter two instruments provide a detection threshold of 2 kg h-1.65 Using 
these sensors the plume structure can be observed in detail to better determine the source of emission. 
LIDAR instruments can also be used from airborne platforms to monitor CH4 and CO2. One example is 
the recently developed CHARM-F, which in several tests achieved a precision of better than 0.5%.66 
Furthermore, airborne instruments measuring in the TIR range can be used to detect CH4 point sources. 
For example, the Spatially-Enhanced Broadband Array Spectrograph System (SEBASS) sensor has been 
proven to be suitable for refining CH4 emission estimates.67 

 

3.1.2. Retrieval Methods 
Commonly, GHG retrievals in the SWIR operate by fitting a modelled reflectance spectrum to the one 
measured by the instrument. Normally physically-based models are used to simulate spectral reflectance 
or radiance as a function of illumination/observation geometry, surface reflectance and atmospheric 
composition. XCH4 and XCO2 are among the parameters in the model that are estimated through the fit. 
Parameters needed for this atmospheric inversion technique are the viewing geometry and a first guess of 

                                                        
59 Bazalgette Courrèges-Lacoste, G., Ahlers, B., Guldimann, B., Short, A., Veihelmann, B., and Stark, H. (2018). ‘The Sentinel-4/UVN 
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60 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., & Frankenberg, C. (2016). 
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atmospheric state constituents.68, 69 GOSAT and TROPOMI, for instance, use a full-physics method to fit 
the scattering properties of the surface and the atmosphere. In this context, full-physics means using 
additional parameters to fit the scattering by cirrus and aerosols utilising a preferably accurate radiative 
transfer model.70, 71 OCO-2 uses a slightly different method by fitting the observed concentrations to those 
simulated by a Gaussian plume model.72 MERLIN uses the integrated path differential absorption (IPDA) 
technique based on differential absorption lidar (DIAL) where two different frequencies are exploited, one 
to be the reference with only weak CH4 absorption and the other to represent the spectral feature.73 

 

3.1.3. Detection Thresholds and Retrieval Precision 
According to their specifications, the commercial instruments GHGSat and Bluefield are able to detect 
CH4 emissions down to 0.24 t h-1 and even 0.015 t h-1, respectively, which is the lowest detection threshold 
of all considered instruments.74, 75 GOSAT has a limit of 7.1 t h-1 that will be enhanced by GOSAT-2 with a 
limit of 4.0 t h-1. TROPOMI detects point sources as small as 4.2 t h-1, whereas CarbonSat’s threshold for a 
single pixel will be 0.8 t h-1. The future geostationary sensors predominantly feature low detection 
thresholds of 4.0 t h-1 for GEO-CAPE and geoCARB, 1.3 t h-1 for G3E, and 0.61 t h-1 for GeoFTS. The 
threshold for MERLIN has not yet been estimated. 76 

Generally, the retrieval precision for CH4 has to be better than 2% in order to identify enhancements 
caused by emissions above the atmospheric background concentration of around 1800 ppb.77 The World 
Meteorological Organization (WMO) even recommends a precision better than 0.1%. For CO2 retrievals 
the precision should be at least 4000 ppb to enable an accurate quantification.78, 79 The presence of clouds 
strongly affects the retrieval, so all instruments seek to exclude cloudy scenes. GOSAT uses a 
simultaneous O2 retrieval at 760 nm since a low oxygen column suggests a clouded pixel. This leads to a 
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ratio of 17% of successful retrievals.80 For a single GOSAT observation the precision of the CH4 retrieval 
using the full-physics method is about 1%, whereas CO2 is retrieved with a lower precision of 2%.81 
GOSAT-2 is expected to have a single retrieval precision of about 0.4% for CH4.82 The TROPOMI sensor 
applies observations from the Visible Infrared Imaging Radiometer Suite (VIIRS), which covers the same 
scenes in order to detect clouded pixels.83 The retrieval can successfully be applied to more than 90% of 
observed cloud-free scenes with a precision better than 1%.84 MERLIN provides a precision of 1-2% for 
global mapping of CH4 concentrations on a 50 x 50 km2 grid by monthly and spatial averaging.85 This 
precision should be outperformed by CarbonSat with a designated precision of 0.4%.86 Finally, the TIR 
instrument IASI has a precision of about 1.2%.87 

 

3.1.4. Conclusion 

The few currently existing spaceborne instruments have several limitations. GOSAT provides retrieval 
products of high quality but has wide spatial observation gaps and a pixel size not below 10 km. 
TROPOMI is only able to detect large point sources and cannot be used for measuring GHG emissions at 
the asset-level. Figure 1 presents an overview of the launch dates plotted against the ground sampling 
distance for the most relevant GHG measuring instruments. The most suitable instruments, which are 
below the necessary detection threshold, are GHGSat, Bluefield and CarbonSat. They are all able to 
resolve individual plumes, with Bluefield having the highest potential due to a spatial resolution of 20 x 
20 m2. However, GHGSat and Bluefield are commercial satellites and their data products are not freely 
accessible and both Bluefield and the CarbonSat instrument are not yet launched. Furthermore, 
monitoring GHG emissions from space is always limited by the accuracy of the applied radiative transfer 
model and by the data availability in space and time. Active instruments like MERLIN have the 
advantage of being independent from solar radiation and cloud cover and are thus able to measure during 
all seasons, at all latitudes, and during day and night.88 On the other hand, the sensor will not be launched 
until 2021 and has a comparably long revisiting time of 28 days. Overall, the direct method of emission 
monitoring is currently feasible for a relatively limited scope of assets (such as assets that are situated in 
regions with very few other sources of emissions in the surrounding area). However, the launch of the 
CarbonSat satellite in 2020 as well as some already scheduled sun-synchronous sensors offer the potential 
for more precise observation of GHG concentrations and emissions at the asset-level. 
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Figure 1: Launch Dates of Current and Future GHG Satellite Missions 
This figure plots the launch date against the ground sampling distance of all major GHG measuring satellites. Satellites are defined 
as below threshold if the detection threshold is below 1 th-1, which is sufficient for the identification of emissions to a particular asset. 
 

 

3.2. Indirect Emissions Monitoring 
The direct method of measuring GHG concentrations through spaceborne and airborne instruments is one 
possible way of monitoring emissions from assets. An alternative approach is to model GHG emissions 
indirectly using identifiable asset characteristics. 

The indirect methodology first requires the identification of key characteristics that are associated with 
GHG emissions. For example asset utilisation rates are inherently linked to the level of GHG emissions. 
Using some of the spaceborne instruments in combination with real asset-level production data89 it is 
possible to model temporal variations in an asset’s utilisation rate. Employing this projection of the 
utilisation rate an estimate of the emissions can then be obtained using a standardised model, such as 
those outlined in the IPCC guidelines. 

The most notable drawbacks of the direct methods are the relatively low resolution of current instruments 
and the imprecise nature of the retrieval methods. This method while still having its own drawbacks 
avoids these limitations associated with the direct method. The main drawbacks of the indirect approach 
are the ability to effectively identify asset characteristics and the accuracy of the modelling of the GHG 
emissions. Despite these potential impediments the indirect approach represents a more feasible 
methodology of emissions measurements based on currently available technology.  

  

                                                        
89 For example see https://www.eex-transparency.com  
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4. Asset Environment and Localisation 
Asset localisation refers to the determination of the precise geospatial footprint of a physical asset. For 
many asset classes, asset-level datasets are only weakly localised (e.g. to the closest town), adding a layer 
of proximity error between the asset of interest and the environmental risk being assessed. Environmental 
risk is inherently geospatial and is heterogeneous across scales – e.g. the geospatial scale required to 
assess risk exposure to protected areas or habitats is different to the scale required to assess chronic 
flood/drought risk exposure. The precise localisation of assets is required to avoid propagating scale 
errors for various risk metrics. 

Further, for many asset classes, a satisfactory public data set of real economy assets does not exist. Such 
datasets are prerequisite to analyses of environmental risk. Asset localisation offers a method to 
synthetically derive these datasets by identifying asset footprints in remote sensing imagery. Training 
data can be developed from ‘seed’ data of known assets. This also offers a method for completing datasets 
with large regional gaps.   

The environment an asset is located in is an important heuristical input to the detection of physical assets. 
Coal mines, for example, are unlikely to be in built-up urban centres. Farms are unlikely to be located in 
arid deserts. Land use classification is a canonical problem in remote sensing applications. This section 
provides an overview of methods that can be used to identify the environment an asset is situated in as 
well as how current databases can be used to facilitate the classification of assets.  

 

4.1. Automatic Asset Environment Classification 
The specific environment of assets is of major importance for an adequate analysis and estimation of their 
vulnerability in relation to climate change. However, manual classification of environments is challenging 
and requires a substantial amount of operator time and effort. As information about asset locations are 
increasing rapidly, environment classification needs to be automated, in order to keep pace. 

Two challenges need to be solved: The first is the automatic classification of the Earth’s surface using 
satellite remote sensing data. This involves the selection of appropriate data (spatial/ spectral resolution/ 
coverage), the selection of appropriate algorithms to process the data, as well as the development of a 
classification scheme that fits the processed data – i.e. the observed land cover - into pre-defined 
categories. The second challenge is to develop a stable routine that extracts the required information about 
an asset of interest from the previously classified global land cover-type products. 

Numerous studies and researchers developed algorithms and routines to classify land surfaces or objects 
in aerial and satellite images, based on their spectral response in multiple wavelengths (visible, UV, IR, 
etc.), starting in the 1950s.90, 91 Based on this, several data products are already available, which offer 
global classification maps of the Earth’s surface in high resolution and accuracy. As creation of such a 
global classification map is time consuming, an already existing map provided by the European Space 
Agency’s (ESA) Climate Change Initiative (CCI) has been used for this study (Figure 2).92 The map is 
actualised in regular time intervals (bi-annually) and provides information with a spatial resolution of 
300m per pixel and 38 different classes, ranging from urban over forest to agricultural areas. As this 
variety of different classes is not required for the intention of this study, all classes were reduced to 7 final 
super-classes, namely urban, forest, grass, soil, snow & ice, cropland and coastal. Utilisation of the CCI 
map is free for research purposes, but can be requested for projects outside of academia as well. 

The listed classes consist of several subclasses from the original ESA CCI classification map, for example 
the “cropland” class contains the original classes “mosaic cropland” and “cropland irrigated or post-
flooding”, and “cropland rainfed”, while the class “soil” contains “bare areas”, “consolidated bare areas”, 
and “unconsolidated bare areas”. This system is flexible, and specific classes can be included or excluded 
from the investigation, if required. In general, the 7 main classes facilitates the analysis of the global 
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92 ESA CCI. (2018) Land cover map viewer. URL: http://maps.elie.ucl.ac.be/CCI/viewer/ (Status: 11.04.18). 
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distribution of the most important asset environments: The occurrence of the coastal class in the vicinity of 
an asset allows us to identify whether a location is situated close to the sea, which is useful for an 
assessment of flood risk. In addition, by exploiting the information stored in the ESA CCI classification 
map, the relative distribution of specific classes around the globe - independent from specific assets - can 
be analysed, to measure the extent of cropland in a specific country. As an example of cropland 
identification, Figure 3 displays a scene in a part of southern Germany within ESA’s CCI land cover map. 
Utilising the map’s information, detailed studies about local, regional, and global cropland distribution 
can be performed. Unfortunately, differences between crop types are not recognised by the original 
classification scheme and can therefore not be extracted. 
 

 
Figure 2: ESA CCI classification map 
Colours represent the 38 different original classes (taken from ESA CCI, 2018). 

As the ESA CCI map is regularly updated, the evolution and utilisation of land can be tracked over time 
caused by economic growth or even natural disasters. Further, the relative distribution of classes within a 
country can be analysed, for example whether the area covered by urban areas is increasing and which 
other classes are decreasing in turn. 

With classification data on hand, the next step is to extract the information of the surrounding areas of an 
asset of interest. By using the asset’s longitude and latitude, a circular extraction mask of previously 
specified dimensions can be fitted onto the map that contains the classification information. As the 
classification map is in a cartographic projection, the extraction mask’s dimensions are connected to the 
latitude of the asset; a higher latitude generates a larger extraction mask, to account for projection-related 
errors. The circular shape of the mask allows an equally weighted extraction of all intra-mask pixels (i.e. 
pixels with the same distance from the asset), in contrast to a rectangular mask shape, which would 
extract pixels with different distances from the asset (from its corners), while giving weight to more 
distant and therefore less relevant pixels. Subsequently, the routine calculates the relative abundance of all 
classes within the mask and determines the most abundant class. This majority class is defined as the 
asset’s environment. 
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Figure 3: Scene from ESA’s CCI land cover map in southern Germany, close to the cities Fürstenfeldbruck and 
Olching 
Yellowish and light green colours indicate cropland areas (“cropland rainfed” and “mosaic cropland”), intermediate and dark green 
represent grassland or forest areas, red are urban areas; scene is ~25 km across, N is up (taken from ESA CCI, 2018). 
 

As the environment of an asset differs depending on the scale of the extraction mask (cf. to Figure 4), the 
described extraction mask is applied three times, with a very small size (immediate surrounding), with an 
intermediate size (wider surrounding), and with a very large size (continental context). This cascading 
classification allows the recognition of an asset; that is situated in an urban area (1st mask, urban), that is 
surrounded by forest (2nd mask, forest), and that is close to the sea (3rd mask, coastal). 

Limitations of this technique are on the one hand its dependency on the accuracy of the underlying ESA 
CCI classification map and on the other hand the assumption that the most abundant class within the 
extraction mask is representative of the asset’s environment. Masks that contain two or more classes with 
very similar abundances (e.g. a mask with 51% forest and with 49% urban), might not be indicative of its 
environment (it is classified as forest only, although it is also urban to a significant extent). The cascading 
extraction masks attempt to account for this ambiguity but cannot completely resolve it. Despite its 
limitations, the application of this routine on existing data about asset locations provides an 
understanding of their environment and thus a better estimation of their vulnerability to climate change. 
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Figure 4: Example of a Small Extraction Mask 
False-colour example of a small extraction mask (asset in Brazil), yellow represents water, orange represents urban, and blue and 
green represent forest areas. Top image, characterised by the urban class (in orange), second image, characterised by the forest class 
(in green and blue), and the bottom image, characterised by the coastal class (in yellow). All masks are placed on the ESA CCI land 
cover map for the extraction. 

 

4.2. Utilisation of OpenStreetMap for Asset Identification and 
Localisation 

The collection of reliable information about the location and type of assets on a global scale is difficult and 
time-consuming. In order to facilitate and speed up this process, existing databases could be exploited. 
OpenStreetMap is a platform which contains information about numerous objects, including data about 
locations and the extent of industrial areas.93 

This information is saved within OpenStreetMap’s database - or in connected databases such as 
OpenWhatEverMap94 - either in vectorised form (polygons), including longitude and latitude as well as 
descriptive tags (such as industrial, agriculture, etc.) or as descriptive text strings (Figure 5). There are two 
possibilities to extract this information. First, an area of interest could be defined and all information 
within this area could be extracted. This could be useful to validate previously derived (e.g. by web 
crawling) latitude and longitude information and to check whether an identified location is actually a real 
asset or not. If the same asset is tagged or located at the same position in OpenStreetMap, it is probably 
real. On the other hand, the entire stack of vectorised data and text strings could be scanned (globally), 
while aiming for specific tags (tag/text search). Subsequently, the longitude and latitude information, 
which is connected to the respective tags of all found matches (e.g. all industrial areas) could be extracted 
and added to existing databases. At the same time, tagged polygons could be used to distinguish different 
assets (for example production sites from office sites), if the respective tags are available. Such a 
distinction might be impossible using optical/multispectral satellite imagery alone. Further, 

                                                        
93 OSM. (2018) OpenStreetMap - About. URL: https://www.openstreetmap.org/about (Status: 11.4.18). 
94 OWEM. (2018) OpenWhatEverMap. URL: http://openwhatevermap.xyz/#3/28.00/18.00 (Status: 11.4.18). 
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OpenStreetMap contains other useful data, such as building heights or locations of public buildings. This 
additional information could be used for other aspects of climate risk analysis, such as susceptibility of 
high-rise buildings to winds. 

Vectorised and geo-referenced information (polygons, lines, points) can be accessed using software such 
as QGIS. However, the extraction of information is limited by the fact that the distribution and availability 
of information is very heterogeneous and highly dependent on the location of the area of interest. Specific 
information might not be available in all countries or might vary in quality and reliability. This also 
underlines the fact that all extracted information requires sufficient (manual) validation, in order to enable 
a sophisticated estimate of the contained errors and uncertainties. However, OpenStreetMap is an 
ongoing project with a global community and the amount and quality of information is improving. For 
this reason, the exploitation of OpenStreetMap is particularly promising to expand existing databases, 
while improving their quality. 

 

 
Figure 5: Example of an Asset in OpenStreetMap 
Exemplary cut-out taken from OpenStreetMap of an asset in the UAE; mapped polygons with information are marked in green, the 
polygon tagged as “industrial” is highlighted in red (centre of the figure). A cross-check with optical imagery and available 
information from the web confirms that this is an industrial site.  

 

 



 
 

Integrating Remote Sensing Data into Climate Risk Analysis 26 

5. Sectoral Details 
This section provides a pilot study for several key industries to assess the feasibility of identifying types of 
assets and their features remotely. Throughout this pilot study the focus is on determining what types of 
assets can be distinguished with multi-spectral imagery and could feasibly be recognised with a high 
degree of accuracy through an automated machine learning process. A summary of this pilot study is 
reported in Appendix B. 

The industries reviewed include: agriculture, heavy industry, mining, oil and gas extraction, the power 
sector, and retail and commercial industries. The industries assessed in this pilot collectively comprise a 
majority of the world’s GHG emissions, accounting for approximately 65% of global emissions. The power 
sector, heavy industry, mining, oil and gas extraction make up around 55% of the world’s CO2 emissions. 
Furthermore, the agricultural industry is the biggest anthropogenic contributor of NO2 and methane 
accounting for approximately 75% and 40% of global emissions respectively.  

In this pilot study asset features that are visible on aerial imagery (Google Earth) and satellite images 
(Sentinel 1, 2 and Landsat 8) are established. This was achieved by identifying the different types of sites 
that fall under a sector, outlining their differences in production technologies and looking for recurring 
features. A focus was placed on identifying features relevant to the scope of the project, meaning the 
identification should add to our understanding of those sites, and ideally give an indication of the 
technology in use, to facilitate the identification of changes in greenhouse gas (GHG) emissions and any 
environmental impacts. After identifying the most promising ideas, three general concepts were tested, 
namely: activity monitoring, area/extent monitoring and asset identification. 
 

5.1. Agriculture 
Types of Products: 

l Arable farmland (huge areas without any buildings or other detectable features). 
l Cattle farms, chicken farms, pig farms (areas with large buildings). 

Features: 

l Recurring features: 
� Large buildings, most of the times in a specific systematic pattern. 
� Sometimes wastewater treatment and collection basins. 

l Visible features in Sentinel 2: 
� Buildings are visible, but not very well due to the limited spatial resolution. 
� Wastewater treatment basins are not visible in Sentinel 2 imagery. 

Summary: 

l Livestock farms are difficult to identify from aerial or satellite images as many are outdoor and 
spread over very large areas (e.g. ranches), while some are indoors (e.g. farms). In both cases, the 
extraction of information is challenging due to large differences in their appearance. 

l However, as outlined in the previous section, it is possible to use the ESA CCI classification map 
to identify croplands (see Section 4.1). Using the ESA’s CCI land cover map a distribution of the 
local, regional and global croplands can be obtained. Temporal changes to the size and utilisation 
of croplands can be tracked over time as the ESA CCI map is updated.  
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Figure 6: Imagery of Two Farms 
Two farms as seen from aerial imagery. As explained above, satellite imagery of such sites does not allow the identification of 
recurring features, which reveal information specific about the company or site. 
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5.2. Heavy Industry 
5.2.1. Aluminium Electrolysis & Exclusion 
Aluminium production with integrated alumina production & red mud disposal: 

l Recurring features: 
� Characteristic red mud disposal sites, covering large areas. 
� Very long and rectangular buildings (similar to glass manufacturing buildings). 
� Almost always at the seaside. 
� Close by power plant (coal [with stockpiles], hydro, oil, gas, etc.) or very distinct 

infrastructure for power retrieval (power lines, masts, transformer stations). 

l Visible features in Sentinel2: 
� Elongated production buildings. 
� Red mud disposal sites are clearly visible in TrueColor, SWIR and NIR. 

 

    

 
Figure 7: Imagery of an Integrated Alumina Production Site 
Mine with red mud disposal shown with a true colour image (top left), with SWIR (top right) and with NIR (bottom). Using either of 
these composites the red mud can be tracked and classified (e.g. green colour in bottom image). 
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5.2.2. Cement 
Types of plants: 

l With quarrying on-site (dry → wet) 
l Transport of limestone to the site (dry → wet) 

On-site mining: 

l Recurring features:  
� Most sites are connected by train or ship. 
� Each site has stockpiles of coal, sometimes below a roof. 
� Occasionally (mainly in the US) cupolas are used to store clinker. 

Only cement manufacturing: 

l Recurring features:  
� Same as for on-site mining, but without quarries or with closed quarries.  
� Google Earth imagery can be used to decide whether a quarry is active or not (machinery 

movements, vegetation on slopes etc.). 
l Visible features in Sentinel 2: 

� Multi-temporal imagery could be used to detect temporal variations, indicating potential 
quarry activity.  

 

  
Figure 8: Imagery of a Cement Plant and Limestone Mine 
Cement plant and limestone mine in 2016 (left) and 2017 (right). The growth of the mine can be seen in the pictures but this provides 
limited information about the technology used on site. High resolution imagery may be helpful for the identification of excavation 
methods, but not whether the cement plant is using dry or wet processes. 
 

Summary: 

l Emissions in the cement sector mainly depend on the type of process used (wet or dry), the pyro-
processing and the transport of limestone to the site. The first two are not identifiable using aerial 
imagery of Sentinel data. Some sites have mining and quarrying on site, while others (often those 
located closer to cities) don’t. The presence or absence of mining on site can be identified through 
aerial photography (moving machinery or vegetation on quarry walls) and possibly using satellite 
data (using temporal imagery to detect increase in mine extent).  

l Coal stockpiles can also be identified, although some plants have these stockpiles under roofs.  
l Cement plants that are found in large industrial areas or cities are more difficult to explore using 

satellite data.  
l Potentially, the locations could be “tested” using satellite imagery to check if the location is a 

cement plant, instead of an office building. This could be done by classifying by shape and colour 
(based on the idea that houses are identified as smaller shapes). However, this would be 
difficult/time consuming, however. 

l Better spatial resolution would not significantly increase the ability to identify sites. 
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5.2.3. Chemicals & Industrial Processes  
Chemicals Sector: Establishments classified in this major group manufacture three general classes of 
products: (1) basic chemicals, such as acids, alkalis, salts, and organic chemicals; (2) chemical products, 
chemicals to be used in further manufacture, such as synthetic fibers, plastics materials, dry colours, and 
pigments; and (3) chemical products to be used for ultimate consumption, such as drugs, cosmetics, and 
soaps; or to be used as materials or supplies in other industries, such as paints, fertilizers, and explosives. 
 

Chemical plants: 

l Recurring features (only for very large plants): 
� Storage tanks (possibly for oil) 
� Coal stockpiles (e.g. at Sadara and Antwerp) 
� Water bodies (possibly for wastewater treatment) 
� Power plants on site (coal, etc.) 

l Visible features on Sentinel 2: 
� Some flares (on very big plants) 

 

 
Figure 9: Imagery of a Chemical Plant 
On very large chemical plant sites, flares can be identified by using NIR or SWIR bands (indicated by arrow). 
 
Summary: 

l As the sector “Chemicals” is extremely broad, there are no recurring features that could be 
identified from satellite images. A large percentage of chemical plants appear simply as buildings, 
often in industrial areas without any specific indication of what chemical product is being 
produced and what technologies they may be using. However, some very large chemical plants 
(e.g. Sadara in Saudi Arabia) have their own power plants and water treatment on site. For these 
types of plants, coal stockpiles and flares can be detected using Sentinel 2 to approximate the 
power sources and amounts of fuels used but no indication on the type of technology and/or 
chemical products can be obtained. 

l Imagery with a better spatial resolution would not facilitate the identification of features, as the 
main limitation is the complexity of the sites and assets. 
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5.2.4. Oil Refining & Upgrading  
Types of Products: 

l LPG 
l Petroleum Naftha 
l Gasoline 
l Diesel 
l Heating oil  

Oil Refinery sites: 

l Recurring features: 
� Close to power stations 
� Towers/Chimneys (possibly cooling towers) 
� Oil storage tanks (circular) 
� Often very close to water, or on the sea shore (due to large water requirements) 

l Visible features in Sentinel 2: 
� Oil Tanks (counting and possibly surface area measurement) 

Summary: 

l The only detectable characteristic of petroleum refinery plants is the presence of circular storage 
tanks as well as the proximity to the sea and power plants. Using all three criteria, petroleum 
refinery sites could theoretically be detected and located automatically. The identification of 
products at each site requires high resolution imagery to detect specific equipment. However, the 
complexity of this may not allow for its automation.  

 

5.2.5. Pulp & Paper 

Types of factories: 

l Integrated mills = produce own pulp (pulping + bleaching) and use it for paper production (on 
the same site, receive logs or wood chips, usually stockpiled without roof). 

l Non-integrated mills = get pulp from another site (receive pulp, usually stockpiled below a roof, 
but not necessarily). 

l Pulping can be done 
� with chemicals 
� mechanical 

l Prior to paper manufacture pulp is bleached. 

Integrated mills: 

l Recurring features: 
� Large stockpiles (logs, wood chips, pulp, etc.) on site and occasionally stockpiles of coal for 

on-site energy production. 
� Integrated mills are always close to water bodies because they need lots of water 
� Locally associated with large tanks for bleaching etc.  
� Always associated with wastewater treatment basins. 

l Visible features in Sentinel2: 
� Wood chips are visible in NIR and SWIR, logs are visible in the red edge IR (8,8A). 
� Energy production on site is not visible with Sentinel 2 NIR bands (possibly a result of the 

chimneys being too small). 
� Locally stockpiles of coal are visible with NDWI, NIR and moisture. 
� Wastewater basins are hard to identify with Sentinel 2. 
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Figure 10: Imagery of a Pulp Factory 
Pulp factory in red edge using Sentinel 2, arrow indicates a wood stockpile in brown. 
 

Non-integrated mills: 

l Recurring features: 
� No recurring features identified other than buildings 

l Visible features in Sentinel2:  
� None 

 

5.2.6. Glass 
Types of sites*: 

l Floating glass production sites (for construction, cars, etc., producing sheets of glass). 
l Glass blowing production sites (for food industry etc., producing bottles, jars). 

*The two types of production sites cannot be distinguished from each other in air- or space borne imagery 
and are treated as one category. Both use raw materials (such as sand, dolomite, fly ash, etc.). 

Glass production sites: 

l Recurring features: 
� Open-air stockpiles of raw materials are not common, raw materials are stored in vertical 

tanks with small diameter but large height. 
� Factory buildings are always rectangular and elongated, probably due to the requirements of 

the floating glass production machinery (one long conveyor belt/floating basins). 
� Manufacturing processes all take place under roof.  
� Production sites have a high energy demand and are always either situated very close to 

power plants, produce their own energy (chimneys are visible at those sites) or have distinct 
power infrastructure (transformers etc.). 

� A common characteristic feature is not present (other than the building shape, which could 
be confused with aluminium production).  

l Visible features in Sentinel2: 
� Chimney activity cannot be identified. 
� Stockpiles (if present) cannot be identified, because they are too small. 
� Elongated buildings are clearly visible, but could be difficult to track, as some factories have 

factories have homogeneous roofs that could confuse automated detection. 
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Summary: 

l Both different glass production factory types cannot be distinguished using air- or spaceborne 
imagery. 

l Factories appear to stockpile raw material inside or in vertically elongated containers/tanks, 
which impedes detection. 

l All glass factories have rectangular and elongated buildings that can be recognised in Sentinel 2 
images. However, roofs are homogeneous and could therefore confuse automated detection 
codes. Further, the elongated factories could be confused with aluminium factories. 

l Glass factories have a high energy demand and are always either situated very close to power 
plants, produce their own energy (chimneys are visible at those sites) or have distinct power 
infrastructure (transformers etc.). Chimney activity cannot be seen in Sentinel 2 imagery. Some 
sites appear to use solar power as well, so multi-temporal high-resolution imagery could be used 
to monitor the distribution of these panels on the roofs of glass factories. 

l All in all, detection with Sentinel 2 would be only possible based on the building shape, but the 
reliability of this method is unclear due to similarities with other sectors. 

 

5.2.7. Iron & Steel 
Summary: 

l All production steps are performed inside or below a roof, but stockpiles can be identified in 
high-resolution imagery. However, stockpiles, if present, are relatively small and cannot be 
identified with Sentinel 2 images. Therefore, investigations related to stockpile composition or 
extent have to be performed with high-resolution imagery. 

l Sentinel 2 NIR bands could potentially be used to detect factory activity (e.g. by sub-setting the 
chimneys and scanning for highly reflective NIR band pixels). 

l A time series analysis of two subsets of Tata Steel NL and Nucor Steel US suggests that Sentinel 2 
can be used with NIR bands to monitor factory activity (activity of on-site energy production e.g. 
by burning coal + activity of kilns, ovens etc.) (on/off) with the main limitation being cloud cover. 
Using high-resolution imagery, the sources of the IR emission can be identified. Subsequently, IR 
emissions could be correlated to activity of certain parts of the factory (such as energy production, 
kiln activity etc.) potentially giving hints about the production. 

 

      
Figure 11: Imagery of a Steel Factory 
True image (left) and Sentinel bands 12,4,2 (right) of a steel factory. The only detectable feature is the flame (red spots on right 
picture), which may be used to track the activity (on/off) of the factory. 
 

  



 
 

Integrating Remote Sensing Data into Climate Risk Analysis 34 

5.3. Mining 
5.3.1. Bauxite 
Bauxite mines: 

l Recurring features: 
� Very characteristic red colour of bauxite (true colour). 
� Machinery can be seen in high-resolution imagery (excavators, trucks etc.). 

l Visible features in Sentinel2: 
� Can easily be distinguished from the surroundings with true colour (red), SWIR (violet or 

pink), and NIR (beige) bands. 
� Bauxite mine extraction can be monitored over time, because most mines are shallow and 

grow horizontally rather than vertically. 
 

 
Figure 12: Imagery of a Bauxite Mine 
Bauxite mine seen with NIR bands on Sentinel 2 imagery. The image shows that due to the characteristic colour and reflectance of 
the dug-out ground, one can see the extent of the mine (brownish). 
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5.3.2. Coal 
Types of mines: 

l Underground 
l Surface mining (huge machines) 

� Rotary excavators/Dragline 
� Mountaintop removal 
� Open-Pit 

Underground coal mines: 

l Recurring features: 
� Stockpiles of coal (black colour) 
� Circular basin (possibly for cleaning or grinding) 
� Pipes/conveyor belts 
� Water bodies (small lakes) 

l Visible features on Sentinel2: 
� Black stockpiles (using band combinations 02 11 8A + Moisture [(B8A-B11)-(B8A+B11)] + 

NDWI [(B3-B8)/(B3+B8)]). Computing the size of the stockpile, it is possible to see changes in 
productivity. 

� Stockpiles are not always present; other storage technologies are not visible on Sentinel. 
� Features like basins and conveyor belts are too small to be visible on Sentinel. 

 

 

              
Figure 13: Imagery of an Underground Coal Mine 
Three images of the same underground coal mine (top: true colour image, bottom left: NIR, bottom right: moisture) indicating the 
process by which one can identify coal stockpiles. The NIR filter shows both water and coal stockpiles in the same colour, while the 
moisture filter identifies only water bodies. Subtracting the moisture filter from NIR, an algorithm can be used to detect coal 
stockpiles, measure the surface area they cover and understand how the mine’s activity may be changing over time. 
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Surface coal mines (dragline): 

l Recurring features: 
� Affected area (Light-coloured soil lines) 
� Stretched out stockpiles 
� Water body (variable size depending on the site) 

l Visible features on Sentinel2: 
� Stockpiles (as described above for underground mines and using NDWI to locate coal piles 

and them moisture index to remove water bodies) 
� Affected area (using vegetation index (B8 - B4)/(B8 + B4))  

 

    
Figure 14: Imagery of a Surface Coal Mine 
True colour image (left) and NDWI composite (right) of a surface coal mine. Detection of a surface coal mine can be done with a 
vegetation filter as well, especially in cases where mines are in vegetated areas and therefore create a big contrast with their 
surroundings. 
 

Summary: 

l Mines are often in areas that have small cities nearby, therefore any image processing would have 
to contain careful separation of what falls under the classification of a “mine”. 

l Sentinel 2 can be used to detect coal stockpiles, if present, using certain band combinations. A 
better spatial resolution would not provide more information for stockpile identification. Some 
mines do not stockpile or stockpile below roofs. The presence of clouds significantly impedes 
stockpile identification. 

l The difference in the shape of the stockpile can be used as an indication of the type of mine 
(surface (long, narrow) vs underground (circular)). 

l Note that in surface mines, what we identify as “stockpile” may not always be stocked coal, but 
may be in-situ coal of recent excavations. 

l High-resolution imagery (Google Earth) is useful to recognise machinery/technology (such as 
excavators, draglines, rotary excavators etc.). 

l Generally, clouds are an obstacle for any frequent observation/detection of features/changes. 
l Due to the large spatial extent of surface extraction sites, frequent classification in combination 

with subtraction could give a constant estimation of productivity, dependent on cloud coverage 
(using Sentinel 2) (using 04 04 04 red edge with high gamma and low gain as a semi-binary 
interpreter). 
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5.3.3. Gold 
Gold Sites: 

l Recurring features: 
� Grounding and rinsing basins on-site to separate gold from the host rock. 
� Large disposal sites for remaining host rock (tailings), gold content in host rock is normally 

below 1% → large amounts of tailings are produced. 
l Visible features in Sentinel 2: 

� Rinsing basins are visible in Sentinel 2 data, but not particularly well, due to their size. 
� Rinsing pools and tailings do not have a characteristic spectral response, which impedes 

reliable detection. 

 

5.3.4. Uranium 
Uranium Sites: 

l Recurring features: 
� Rinsing basins are present in the mines to separate the host rock (tailings) from the uranium. 
� Large disposal sites for remaining host rock (tailings), uranium content in host rock is very 

low → large amounts of tailings are produced. 
l Visible features in Sentinel 2: 

� Rinsing basins are visible in Sentinel 2 data, but not particularly well, due to their size. 
� Rinsing pools and tailings do not have a characteristic spectral response, which impedes 

reliable detection. 
 

5.3.5. Iron Ore 
Iron Ore Sites: 

l Recurring features: 
� Reddish colour of the iron-rich soil 
� Pools (cleaning and waste disposal) 

l Visible features in Sentinel 2: 
� By using bands R:04,G:04,B:04, we can classify (in semi-binary mode) the mine. Then, by 

defining a subset/polygon around the possible extent of the mine, temporal images can be 
used to track the extent of growth. 

  

     
Figure 15: Imagery of an Iron Ore Mine 
A semi-binary classification indicates the extent of an iron ore mine and can be done temporally to track growth/activity. 
 



 
 

Integrating Remote Sensing Data into Climate Risk Analysis 38 

5.3.6. Diamond 
l Recurring features: 

� Cyclonic separation basins that separate the ore from the diamonds using gravity 
l Visible features in Sentinel 2: 

� Cyclonic separation basins are visible in Sentinel 2 images, but with certain limitations, 
caused by the poor spatial resolution 

 

           
Figure 16: Imagery of a Diamond Mine 
True colour image (left) and IR image (right) of a diamond mine. Detection of the extent of diamond mines is possible using IR 
bands, but the expansion is usually very slow (since they are mainly underground) and may not provide much information relevant 
to the project’s scope. 
 
Summary: 

l Gold mining uses mercury and nitric acid to separate and process the final product, both of which 
can have large environmental impacts. The disposal site of these is clearly visible, usually at a 
proximity to the gold mine, with the presence of some pools. The automatic detection and 
calculation of the surface covered by these disposal sites may be difficult as they often have 
similar spectral responses to the mine itself. The detection of rinsing pools is possible using 
Sentinel 2, but limited by their relatively small size. As they don’t have a characteristic spectral 
response either, their detection is impeded as well. 

l Multi-temporal image stacks could be exploited to analyse gold, uranium and diamond mine 
evolution over time, but as these mines go usually deeper instead of wider, results are not 
expected to be particularly good (using 04 04 04 red edge with high gamma and low gain as a 
semi-binary interpreter). 

l Uranium mining uses acids and bases to separate and process the final product, both of which 
can have large environmental impacts. The disposal site of these is clearly visible, usually at a 
proximity to the uranium mine, with the presence of some pools. The automatic detection and 
calculation of the surface covered by these disposal sites may be difficult as they often have 
similar spectral responses to the mine itself. The detection of rinsing pools is possible using 
Sentinel 2, but limited by their relatively small size and number. As they don’t have a 
characteristic spectral response either, their detection is impeded as well. 

l Diamond mining uses ferrosilicon & water solution and cyclones basins to separate and process 
the final product. The disposal site of the by-products is clearly visible, usually at a proximity to 
the diamond mine, with the presence of some pools. The automatic detection and calculation of 
the surface covered by these disposal sites may be difficult as they often have similar spectral 
responses to the mine itself. The detection of cyclone pools is possible using Sentinel 2, but limited 
by their relatively small size and number. As they don’t have a characteristic spectral response 
either, their detection is impeded as well. 
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5.4. Oil & Gas Extraction 
Methods: 

l Off-shore 
� Drillship 
� Semi-submersible 
� Jack-Up Rig 
� Drilling Barge 

l On-shore (classic drilling rig) 
� Landrig (liquid oil) 
� Shale oil 
� Tar sands / Oil sands (different methods)  

Ideas: 

l Look at a platform that is on secondary recovery stage and look at before and after images, to 
identify methods by which we can detect the stage of oil recovery of each site (on-/offshore). 

Off-shore sites: 

l Issues with off-shore rigs:  
� Non-constant locations 
� Scarce information on coordinates 
� Difficult to attribute each location to specific companies 
� Using radar, we can locate off-shore locations around oil-reserves (through clouds) but 

cannot see any features signifying change (frequent location extraction but no information 
about type, company, activity, etc.) 

� Using Sentinel 2 with NDWI and NIR bands oil platforms can be easily detected, only limited 
by cloud cover 

� NIR bands of S2 might indicate chimney activity (productivity estimation?) 

On-shore oil production sites: 

l Conventional oil extraction: 
� Recurring features: 

■ Circular tanks (visible only on aerial photos, sometimes in Sentinel 2, if large enough) 
■ Flaring of gas (CH4) 

� Visible on Sentinel 2: 
■ Possibility to classify oil/shale gas field extent using soil brightness (indicating roads vs 

soil), could be an indication for a growing extraction & production (potentially in 
combination with flare counting).  

■ The presence (or absence) of flares (Sentinel bands 12,4,2) can indicate whether the site 
captures or re-injects natural gas. 

■ Using sentinel bands NIR+8A, we can identify flares off-shore. Combining this with 
radar images we can identify where off-shore sites exist. (main limitation: clouds) 

■ Pump jacks are not visible through sentinel 
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Figure 17: Imagery of the Athabasca Tar Sand Field 
Athabasca tar sand field shown in 2016 (top) and 2017 (bottom). Infrared bands in sentinel allow for a classification and correct 
separation of the mine and the surrounding environment. A multi-temporal analysis (e.g. annual) can allow the tracking of surface 
area covered or the expansion of the mine. 
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Figure 18: Imagery of an Oil Field 
True colour image (left) and Sentinel bands 12,4,2 (right) of an oil field (Ghawar, Saudi Arabia). The bands 12,4,2 on Sentinel 2 
indicate the position of flares on site, and can be indicate field activity (on/off) of the site. 
 

Summary: 

l Offshore: oil platforms are not contained in Google Earth imagery but are visible in Sentinel 2 
with NDWI and NIR bands, however visibility is limited by intense cloud cover. Sentinel 1 radar 
can be used to locate all barges, platforms, etc. and track them over time, but cannot recognise 
type, owner, or any other details. By using multi-temporal images ships (moving) could be 
distinguished from platforms (not moving). In addition, Sentinel 2 (NIR+8A) can be used to 
detect flaring platforms to verify Sentinel 1 findings and to measure platform activity, but heavily 
dependent on cloud cover. 
� Time series analysis of a Norway subset suggests that Sentinel 2 can be used with NIR bands 

to monitor offshore oil platform activity (on/off) with around 2 images per month, limited by 
cloud cover. The results from Norway further indicate that platform location extraction with 
Sentinel 2 is significantly limited due to clouds and could be performed roughly once a year 
by mosaicking cloud free images. 

l Onshore: oil fields in various locations appear to have round storage tanks as common features, 
but can only occasionally be detected with Sentinel 2 due to size limitations. However, gas flares 
can be recognised and could give a measure of field activity (counting) and extent (assume a 
circle around each flare with a derived mean distance, which covers the oil field). Classification 
and subtraction of light sand fields and roads in contrast to either the surrounding soil or darker 
soil within the oil field based on Sentinel 2 imagery could give a temporal measure of oil field 
activity (growth). 

l Shale gas field: Gas flares can be recognised as well and could give a measure of field activity 
(counting) and extent (assume a circle around each flare with a derived mean distance, which 
covers the shale gas field). Classification and subtraction of light soil fields and roads in contrast 
to either the surrounding soil or darker soil within the shale gas field based on Sentinel 2 imagery 
could give a temporal measure of activity (growth). Extraction and injection locations could be 
distinguished by using high-resolution imagery (e.g. aerial imagery, looking for sites with tanks, 
pipes etc. and sites with only injection holes, which cannot be identified with Sentinel 2), giving 
an idea of relation between injection and extraction = shale gas field productivity and reserves. 

l Oil sands/ tar sands: flares can be recognised as well and could give a measure of field activity 
(counting). Due to the large spatial extent of the extraction sites, frequent classification in 
combination with subtraction could give a constant estimation of productivity, dependent on 
cloud coverage (using Sentinel 2). 
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5.5. Power Sector 
5.5.1. Coal 

              
Figure 19: Imagery of a Coal-Fired Power Plant 
True colour image (left), NDWI (middle) and moisture composites (right) of a coal-fired power plant. By comparing moisture with 
NDWI, we assume that an automatic algorithm could be set up to potentially identify and track coal stockpiles. 
 

Similar to coal mines, stockpiles of coal can be identified and tracked temporally to detect size changes 
(not precisely due to a lack of spatial resolution), using the NDWI and Moisture index. A possible issue is 
that often power plants do not only burn coal, and therefore other black shapes may be detected. 
Additionally, we can see the number and size of chimneys at each coal-fired power plant, especially 
through aerial imagery. The presence of clouds and application of low resolution imagery makes this 
detection difficult using Sentinel 2 images. An automated detection could target the stockpiles of the 
power plants quite effectively using the same method as coal mines. 

 

5.5.2. Gas 

Identification of gas plants is generally difficult; due to a lack of stockpiles and as power plants appear to 
have thin chimneys that are not visible in Sentinel 2 images. Additionally, detection of gas tanks is 
difficult, as the resolution is not adequate. Indicators are power lines and potentially high chimneys (only 
their shadows might be visible with Sentinel 2). Using high-resolution imagery, identification is much 
easier, but automated detection does not appear to be possible based on currently available imagery. 

 

5.5.3. Oil 

Oil plants are characterised by huge oil storage tanks, which are clearly visible in Sentinel 2 imagery. 
Further indicators are power lines and potentially high chimneys (only their shadows might be visible 
with Sentinel 2). Using high-resolution imagery, identification is not any easier. An automated 
identification could be done using colour- and object based storage tank detection. Using pixel size and 
counting, one can approximate the oil storage capacity of each plant. 

 

5.5.4. Nuclear 

There are no common features between nuclear plants. Although the reactors can be identified through 
aerial imagery, they vary in shape and size between sites, making automated identification impossible. In 
addition, all locations of nuclear power plants are known and fuel type and shape do not change. 
However, high-resolution imagery could be used to check the progress of construction of new plants or 
expansions of existing plants (Sentinel 2 data is not useful for this application). 
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Figure 20: Imagery of a Nuclear Plant 
High resolution imagery (aerial, Google Maps) of a nuclear plant. Features specific to such plants are difficult to distinguish from 
their surroundings. 
 

5.5.5. Solar PV 

As solar PV cells have a very particular appearance from space, we wanted to test whether an 
unsupervised classification of a region (with a solar park) can help the automatic identification of such 
panels. If successful, this process can be automated and done temporally to track changes and growth of 
solar parks.  

Unsupervised classification (e.g. with k-means) also delivers very good results with very few mis-
interpretations, using only RGB bands. The spatial resolution of Sentinel 2 is sufficient to resolve arrays of 
solar panels, although no single cells can be identified. Using this classification technique, over time the 
spatial extent can be measured and potentially correlated to power production.  
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Figure 21: Imagery of Solar Panels (1) 
Unsupervised classification of solar panels using Sentinel 2. Note: the code detects classes in an unsupervised manner, but the 
manual testing of the number of classes best depicting this can be considered some sort of supervision and could potentially change 
from site to site.  
 

 
Figure 22: Aerial Imagery of Solar Panels (2) 
The expansion of the solar park (shown as more red pixels) is identified by classifying the image into four classes with a subsequent 
binary masking of the class of interest vs. all other classes. Such analysis can be done on a temporal basis (e.g. bi-annually) to 
understand how and if PV cell arrays are increasing. The image above shows an unsupervised Landsat classification from 2016 (left) 
and 2017 (right).  
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5.5.6. Wind 
Using GRD-level Sentinel 1 radar data, wind turbines are clearly visible. Using this imagery it is also 
possible to obtain information on the number of turbines present at a site and keep track of farm growth 
over time. Due to the limited spatial resolution, turbines can’t easily be distinguished from ships or other 
floating metallic objects immediately, but as turbines are built in a regular pattern, radar signatures in 
between the grid of turbines are likely other objects (such as ships). Locally, the blades of the turbines are 
measured by the radar and could support identification. Using a satellite image processing like SNAP, 
precise coordinates of single wind turbines can be derived. 
 

   

 
Figure 23: Imagery of a Wind Turbine Field 
Sentinel 1 SAR image showing the coastline of London, UK. Location of the wind turbine field is marked with an arrow. The images 
above show the same area at different scales. The top picture demonstrates that wind turbines can be counted and their pattern 
identified, while the bottom picture shows higher details. In the last image, one can see what appear to be ships around the wind 
turbines. 
 

  



 
 

Integrating Remote Sensing Data into Climate Risk Analysis 46 

5.6. Retail & Commercial 
Recurring features: 

l Parking lots (can be tracked with high resolution satellite imagery or aerial imagery but not with 
Sentinel 1 or 2). 

l Other than parking lots, retail companies in satellite imagery mostly appear as buildings, and do 
not have many features that can be linked to change, or emissions. 

 

       
Figure 24: Imagery of a Retail Location 
Aerial imagery (left) and Sentinel 2 true colours (right) of a retail location, indicating the need for high resolution imagery in order to 
accurately make estimates about location activity and operations. 
 

5.7. Overview 
This pilot study establishes the feasibility of identifying and monitoring the activity of various industries.  
Most notably this study indicates that it is possible to monitor the activity of steel plants and oil fields, 
measure changes in the area covered by mines, tar sand fields, coal stockpiles and solar panels as well as 
to identify and locate off-shore wind farms and track their growth across time. 

Based on this study the most promising sectors that are likely to be able to be identified through an 
automated machine learning process are mining, coal-fired power plants and croplands. Mines and the 
stockpiles can easily be distinguished from their surroundings using Sentinel 2 imagery. Furthermore, it is 
possible to identify the type of mine based on differences in the shape of the stockpiles (surface (long, 
narrow) vs underground (circular)) as well as the machinery/technology that is being used. Similarly, 
coal-fired power plants can easily be identified based on coal stockpiles as well as the number and size of 
chimneys. The stockpiles for both of these sectors can also be effectively monitored over time, which will 
facilitate the indirect measurement of GHGs. Finally, croplands can also be identified through the use of 
the ESA CCI classification map. The sizes and utilisation rates of these croplands can also be tracked over 
time as the ESA maps are updated. As a result of the ease of identification and the ability to perform 
temporal analyses these three sectors will be the primary focus for the next phase of the project.
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6. Conclusion 
Accurate asset-level data can dramatically enhance the ability of investors, regulators, governments, and 
civil society to measure and manage different forms of environmental risk, opportunity, and impact. 
Asset-level data is information about physical and non-physical assets tied to company ownership 
information.  
We have focused on the potential role of remote sensing (and related technological developments such as 
machine learning) to secure better asset-level data and at higher refresh rates. In particular we focussed on 
using remote sensing to identify the features and use of assets relevant to determining their GHG 
emissions. 
We find that the process of identifying and tagging assets (e.g. power generating stations, mines, farms, 
industrial sites) and asset-level features (e.g. cooling technologies, air pollution control technologies) can 
be automated through the use of machine learning. It is possible to train learning algorithms to recognise 
an asset and its features in remote imagery and then scan global imagery corpuses to identify all assets of 
that type. Human error rates are sufficiently low on these classification tasks that it is reasonable to expect 
these problems to be entirely automatable. With the exponential increase in space-based sensing, 
computing power, and algorithmic complexity, end-to-end learning systems are becoming increasingly 
available to academic researchers and the private sector alike. We expect that the development of a global 
catalogue of every physical asset in the world to be already within the reach of technical feasibility. 
There are also viable methods using remote sensing data that could be implemented to measure asset-
level GHG emissions too. These methods are: (1) a direct method, which involves the use of various 
sensors on spaceborne and airborne instruments to measure emissions directly; and (2) an indirect 
method, which utilises various identifiable asset characteristics to model GHG emissions. 
The direct method of monitoring emissions requires the use of satellite or airborne instruments. 
Accurately monitoring GHGs from space is challenging because of their relatively small signal in 
comparison to other atmospheric constituents, but advances in both sensor technology and retrieval 
models are leading to more precise detection.  
Direct emission monitoring is currently feasible for a relatively limited scope of assets (such as assets that 
are situated in regions with very few other sources of emissions in the surrounding area). However, the 
launch of the CarbonSat satellite in 2020 as well as some already scheduled sun-synchronous sensors offer 
the potential for more precise observation of GHG concentrations and emissions at the asset-level. 
A complementary approach to direct measurement is to model GHG emissions indirectly using 
identifiable asset characteristics. This first requires the identification of key characteristics that are 
associated with GHG emissions. For example, asset utilisation rates are inherently linked to the level of 
GHG emissions. Using some of the spaceborne instruments in combination with real asset-level 
production data it is possible to model temporal variations in an asset’s utilisation rate. Employing this 
projection of the utilisation rate an estimate of the emissions can then be obtained using a standardised 
model, such as those outlined in the IPCC guidelines. 
The most notable drawbacks of the direct methods are the relatively low resolution of current instruments 
and the imprecise nature of the retrieval methods. The indirect method avoids these limitations associated 
with the direct method. The main drawbacks of the indirect approach are the ability to effectively identify 
asset characteristics and the accuracy of the modelling of the GHG emissions. Despite these potential 
impediments the indirect approach represents a more feasible method of measuring emissions based on 
currently available technology.  
Through future research projects undertaken over multiple phases we plan to make asset-level data 
(including various technical features) and GHG emissions monitoring for each asset (using both direct 
and indirect methods) available for every physical asset in every sector globally, beginning with the most 
GHG intensive assets. We hope to create platforms for various users to access and use this data. This 
endeavour has the potential to transform how different actors in different parts of society measure and 
manage environmental risks, impacts and opportunities. It is enabled by significant public (and private) 
investment in data capture and remote sensing, which can now be brought together and processed in 
novel ways for direct application.   
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Glossary 
Bayesian Error: The lowest possible prediction error that can be achieved for the classification of a 

random outcome and is the same as irreducible error. 
Convolutional Neural Network: A type of neural network that has been used in the analysis of visual 

imagery. 
Data Resampling: A statistical technique which involves the use of random subsets of available data with 

replacement for the estimation or validation of a statistical model. 
Data Synthesis: A statistical technique that pools data from many different studies in order to obtain a 

more model than can be obtained from a single study. 
Detection Machine: A machine that uses machine learning processes to classify or identify data into 

various categories. 
Light Detection and Ranging (LIDAR): A surveying method that measures distance to a target by 

illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor. 
Machine Learning: A field of computer science that uses statistical techniques to give computer systems 

the ability to "learn" by using data, without being explicitly programmed. 
Mosaicking: The process of unifying multiple images collected at different times or from different 

sources, which facilitates the comparison and combination of various images. 
Multi-Class Classifiers: The classification of instances into one of three or more classes, in order to 

facilitate the prediction of a new instance into one of the classes. 
Multi-Spectral Imagery: An image that captures data over a range of wavelengths within the 

electromagnetic spectrum. 
Neural Network: A machine learning process that uses a large number of highly interconnected 

processing elements working in unison to solve specific problems. 
OpenStreetMaps: A free editable map of the world, created by volunteers using open source content. 
Orthorectification: A process of removing any effects associated with the tilt the image was taken at and 

adjusting for any terrain effects to create an image with a constant scale that can easily be 
processed. 

Random-Forests: Is a machine learning method that uses a number of decision trees to classify data into 
two or more categories. 

Shortwave Infrared (SWIR): The shortwave infrared section of the electromagnetic spectrum is typically 
defined as light with wavelengths between 900 to 3000 nanometers (nm). SWIR is similar to 
visible light in that photons are reflected or absorbed by an object, providing the strong contrast 
needed for high resolution imaging. 

Support Vector Machines: A model of supervised learning used in machine learning for the analysis and 
classification of data into two or more categories. 

Thermal Infrared (TIR): The thermal infrared section of the electromagnetic spectrum can be classified as 
any wavelengths between 3,000 to 100,000 nanometers (nm). TIR is in essence the heat radiation 
that is emitted from the surface of the Earth. 

Training Data: A set of data that is used to initially fit the parameters of the model. The model that is 
fitted with the training data can then be validated and tested with other datasets. 

Transfer Learning: A technique in machine learning that involves using the knowledge obtained from 
solving one problem for a different but related problem. 

Visible and Near-Infrared (VNIR): The visible and near-infrared section of the electromagnetic spectrum 
is typically classified as wavelengths between 400 to 1400 nanometers (nm). VNIR includes the 
full visible spectrum band as well as a portion of the infrared spectrum. 

 



 
 

 
 

Integrating Remote Sensing Data into Climate Risk Analysis  49 

Appendix A: Spaceborne Instruments for Monitoring Atmospheric GHG 
Concentrations 

Mission Launch Orbit95 T. Cov.96 Spatial Scale PS Det.97 GSD98 Measure Technique Fitting window [nm] Data Products DT99 RP100 

GOSAT 2009 ss 3 regional/continental no 10 passive SWIR 1650, 2060 XCO2, XCH4 7.1 1 - 2 

GOSAT-2 2018 ss 6 regional/continental no 10 passive SWIR 1650, 2060, 2300 XCO2, XCH4, XCO 4.0 0.4 

TROPOMI 2017 ss 1 global partly 7 passive SWIR 2300 XCH4, XCO 4.2 < 1 

Sentinel-5/UVNS 2021 ss 29 global no 7.5 passive UV/VNIR/SWIR 290, 400, 1633, 2345 i. a. XO3, XSO2, XCO, XCH4 n.o.101 n.o. 

OCO-2 2014 ss 16 global partly 1.29 x 2.25 passive SWIR 1610, 2060 XCO2 n.o. < 0.3 

TanSat 2016 ss 16 national/global no 1 x 2 passive SWIR 1610, 2060 XCO2 n.o. < 1 

GHGSat 2016 ss 14 local yes 0.05 passive SWIR 1650 XCH4, XCO 0.24 1 

Bluefield 2019 - 21 ss 1 global yes 0.02 passive SWIR 2300 XCH4 0.015 0.8 

CarbonSat 2020 ss 5 - 10 global yes 2 passive SWIR 1650 XCH4, XCO2 0.8 0.4 

MERLIN 2021/22 ss 28 global yes 0.15 active Lidar 1650 XCH4 n.o. 1 - 2 

GEO-CAPE 2022 gs < 1 continental yes 0.375 passive UV/VNIR/SWIR 340, 1100, 1245, 1640, 2135 i.a. XSO2, XHCHO, XCH4, XNH3 4.0 n.o. 

GeoFTS proposed gs < 1 continental no 2.7 passive NIR/SWIR 760, 1600, 2300 XCO2, XCH4, XCO, XH2O 0.61 0.2 - 2 

geoCARB 2020 - 2023 gs < 1 continental no 5 - 10 passive NIR/SWIR 763, 1611, 2065, 2323 XCO2, XCH4, XCO 4.0 0.7 - 10 

G3E proposed gs < 1 continental yes 2 x 3 passive NIR/SWIR 760, 1600, 2300 XCO2, XCH4, XCO 1.3 0.5 - 10 

Sentinel-4/UVN 2019 gs < 1 national no 8 passive UV/VNIR 305, 500, 760 XO3, XNO2, XSO2 and XHCHO n.o. n.o. 

AIRS 2002 ss 0.5 global no 45 passive TIR 6200, 8200 XO3, XSO2, XCO, XCH4, XCO2 n.o. 1.5 

IASI 2007 ss 0.5 regional/global no 12 passive TIR 7100, 8300 XO3, XCH4, XCO2, XH2O n.o. 1.2 

IASI-NG 2021 ss 0.5 regional/global no 12 passive TIR 7100, 8300 XO3, XCH4, XCO2, XH2O n.o. n.o. 

CrIS 2011 ss 0.5 global no 14 passive TIR 7300, 8000 XCH4 n.o. 1.5 

                                                        
95 ss = sun synchronous; gs = geostationary 
96 temporal coverage [days] 
97 ability of point source detection 
98 ground sampling distance [km] 
99 detection threshold [th-1] 
100 retrieval precision [%] 
101 no information 
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Appendix B: Sectoral Summary Table 
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AIR Visible through aerial imagery only (access to high resolution satellite data could change this) 
 

  moderately useful 
SAT Visible through satellite imagery only (specify) 
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AIR / SAT Visible through aerial and satellite imagery (specify satellite) 
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Color Scheme   
 

Usefulness grade   
  Not Visible 

 
  very useful 

AIR Visible through aerial imagery only (access to high resolution satellite data could change this) 
 

  moderately useful 
SAT Visible through satellite imagery only (specify) 

 
  not useful 

AIR / SAT Visible through aerial and satellite imagery (specify satellite) 
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Oil & Gas Extraction                           

Oil production SAT   AIR/SAT       SAT AIR           
                            

Power Sector                           
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  Not Visible 

 
  very useful 

AIR Visible through aerial imagery only (access to high resolution satellite data could change this) 
 

  moderately useful 
SAT Visible through satellite imagery only (specify) 

 
  not useful 

AIR / SAT Visible through aerial and satellite imagery (specify satellite) 
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Color Scheme   
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  Not Visible 
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AIR Visible through aerial imagery only (access to high resolution satellite data could change this) 
 

  moderately useful 
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  not useful 

AIR / SAT Visible through aerial and satellite imagery (specify satellite) 
    

  



 
 

 
 


